
Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

A Self–Adapting User Interface for
Smart Spaces

Andreas Hubel

Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

A Self–Adapting User Interface for Smart Spaces

Eine selbstanpassende Benutzerschnittstelle für Smart Spaces

Author Andreas Hubel
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. rer. nat. Marc-Oliver Pahl
Date September 15, 2017

Informatik VIII
Chair of Network Architectures and Services

Abstract

This thesis provides the foundation for adaptive, state of the art, graphical user interfaces
within the DS2OS project. The DS2OS project provides a platform independent middle-
ware (VSL) for modelling, accessing and processing information of (smart) devices. It
connects previous incompatible devices through one uni�ed namespace with reusable
services, distributed via a global exchange platform, with security in mind.

The UI prototype created within this thesis, is a �oor plan based web app. Research
shows that current state of the art JavaScript web application frameworks are Angular,
Ember and React. To build this UI as �exible and extensible as the VSL itself, Ember and
its ‘Components’ are chosen. The �oor plan is implemented using the Lea�et web map
library.

To model the spatial relationships (“Which device is in which room?”), set theory in 3D
space is used via PostgreSQL/PostGIS as geodatabase. Thus, the spatial model is �exible
enough to cover special cases, without becoming too complex for the default case. This
model is exposed in the VSL via new geo service using GeoJSON as exchange format.

To introduce the reader to the problem domain and to gather requirements, the document
is opened by an interview series with occupants of four di�erent physical spaces. It’s
closed with quantitative and qualitative evaluations, including a six participant user
study checking usability.

Further artefacts are: analysis of existing smart space UI using �oor plans, requirements
for modern smart space UIs, and a corresponding use case model.

Zusammenfassung

Diese Arbeit legt die Grundlagen für anpassbare, State of the Art, gra�sche Benutze-
rober�ächen im DS2OS-Projekt. Das DS2OS-Projekt stellt eine plattformunabhängige
Middleware zu Verfügung (VSL); die Modellierung, Zugri�, und Verarbeitung von In-
formationen (intelligenter) Geräte ermöglicht. Es verbindet vorher inkompatible Geräte
über einen einheitlichen Namensraum mit wiederverwendbaren Diensten, die über eine
globale Austauschplattform verteilt werden, wobei trotz allem auf optimale Sicherheit
geachtet wird.

Der im Rahmen dieser Arbeit entstandene UI-Prototyp, ist eine Gebäudeplan-basierte
Web-App. Die Recherche ergibt, dass die aktuellen State of the Art JavaScript Web-
Application-Frameworks Angular, Ember, und React sind. Um die Benutzerober�äche
so �exibel und erweiterbar wie das VSL selbst zu konstruieren, wird Ember und dessen
‘Components’ genutzt. Der Gebäudeplan wird mit der Lea�et Webkarten-Bibliothek
umgesetzt.

Um die räumlichen Beziehungen zu modellieren (“Welches Gerät ist in welchem Raum?”),
wird über PostgreSQL/PostGIS als Geodatenbank auf Mengenlehre im 3D-Raum zurück-
gegri�en. Dadurch ist das räumliche Modell �exibel genug, um Spezialfälle abzudecken,
ohne für den Standardfall zu komplex zu werden. Dieses Modell wird im VSL über einen
neuen Geo-Service bereitgestellt, wobei GeoJSON als Austauschformat verwendet wird.

Um den Leser in die Problemdomäne einzuführen und Anforderungen zu sammeln,
beginnt das Dokument mit einer Interviewserie mit den Nutzern von vier verschiede-
nen physikalischen Orten. Es endet mit quantitativen und qualitativen Evaluierungen,
darunter eine Usability-Nutzerstudie mit sechs Teilnehmern.

Weitere Artefakte sind: eine ausführliche Analyse bestehender Smart Space UI’s mit
Gebäudeplan, Anforderungen an moderne Smart Space UI’s, und ein Use Case Modell.

I

Contents

1 Introduction 1
1.1 Document conventions . 2
1.2 Task de�nition and environment . 3
1.3 Thesis outline and methodology . 4

2 Analysis 7
2.1 Problem domain: smart spaces . 9

2.1.1 Interview preparations . 9
2.1.2 Single apartment Munich . 11
2.1.3 Single house Augsburg . 14
2.1.4 Hackerspace Bamberg . 16
2.1.5 University building Garching 18

2.2 VSL and DS2OS . 24
2.2.1 Data model . 25
2.2.2 Deployment and services inter-exchange 26
2.2.3 API . 27
2.2.4 Programmatic UI, extensible by third party 30

2.3 Use case model . 32
2.4 Back-end . 33

2.4.1 Geo data and the VSL . 34
2.4.2 Geo databases . 37
2.4.3 Geometries . 38

2.5 Front-end . 39
2.5.1 Development of user interfaces for smart spaces 40
2.5.2 Floor plans as smart space UI 43
2.5.3 Mobile apps in smart spaces . 53
2.5.4 Human interface guidelines . 54
2.5.5 Self-adapting UI . 56
2.5.6 Building blocks . 61

2.6 Requirements list . 66

II Contents

3 Related work 69
3.1 openHAB . 69
3.2 free@home . 72
3.3 HomeKit . 76
3.4 Comparison . 77

4 Design 79
4.1 System overview . 80
4.2 Back-end . 81

4.2.1 Geo data model . 81
4.2.2 Geo service API . 84

4.3 Front-end . 88
4.3.1 Front-end libraries . 88
4.3.2 Front-end software architecture 89
4.3.3 Front-end UI extensions . 92
4.3.4 Graphical UI-Design . 93

5 Implementation 97
5.1 Back-end: Geodatabase . 98
5.2 Back-end: Geo service . 99
5.3 Front-end: Web app . 102

5.3.1 Floor plan view . 102
5.3.2 List / grid view . 103
5.3.3 Web app – KA interaction . 104
5.3.4 Front-end extensions . 106

6 Evaluation 109
6.1 Requirements evaluation . 109
6.2 Tests and measurements . 111

6.2.1 Test 1: Cross browser compliance on PC 114
6.2.2 Test 2: Finding bottlenecks . 115
6.2.3 Test 3: AHN lab: wire vs wireless 116
6.2.4 Test 4: Cross browser compliance on tablets 118
6.2.5 Test 5: Android performance 119
6.2.6 Test 6: UI walk-through on mobile devices 120

6.3 User study . 120
6.3.1 Results . 121

7 Conclusion 125
7.1 Assessment . 125
7.2 Future work . 126
7.3 Discussion . 129

Bibliography 131

1

Chapter 1

Introduction

When I mentioned this thesis’s title “A Self–Adapting User Interface for Smart Spaces”
the �rst question I typically got was “What is a smart space?”. At our research project, the
term smart space is a generalisation of the ‘smart home’ to not only include residential
homes like a �ats, detached homes, or multifamily residences; but also commercial
buildings like o�ces, meeting rooms or lecture halls.

Every human interface can be regarded as UI: The wall-switch for the lights, the push
buttons for the blinds, the thermostat for heating/ventilation, or the infra-red remote
control for a TV or a projector.

Problems with today’s smart space UIs are:

1. Solutions implemented for one space are not simple reusable in an other space.
• API is not abstract enough: services use �xed devices addresses and not

generic terms like ‘living-room lamps’.
• No or only insu�cient exchange platforms: no app store, but forums or blogs

with instructions or snippets to copy&paste, rather than easily installable
software packages (apps).

2. Semantic relationships are not modelled as such, e.g. they are often only rep-
resented by menu structures. Thus computers do not know, which device is in
which room.

3. Some UI apps are not platforms in-depended, e.g. ActiveX ‘web UI’ requiring a
Windows desktop PC; or the devices UI app only exist for iOS but not for Android
etc.

4. Users themselves can not adapt the UI, but need to call in (external) experts for
changes.

5. Solutions are more expensive than they need to be: Instead of mounting Android
tablets to the wall, �ve times as expensive touch screens with a severely restricted
feature set are installed.

2 Chapter 1. Introduction

6. Vendors create silos for their devices:
• UIs are distributed to di�erent apps or mounted in di�erent locations in a

room.
• System overlapping group actions (scenes) are not possible due to non-

existent, proprietary or incompatible APIs.
7. New users have to �nd out which devices can be controlled and how these devices

are labelled in the UI, e.g. “Where is lamp 3?”.

1.1 Document conventions

Following conventions are used throughout this document:

• Numbers in square brackets are source references, e.g. [1] refers to source 1;
[3, p. 25] refers to page 25 of source 3; and [5, ch. 3] refers to chapter 3 of source 5.
To dereference these source numbers, see the bibliography at the end of this
document.

• Numbers in parentheses refer to others (sub)sections – for example (1.2.3). On
odd pages, the current section number is printed in the top left corner.

• Angle brackets are used for requirements and use cases. <R.x> refers requirement
x, c.f. requirement index in section 2.6. <U.y> refers Use case y, c.f. section 2.3.

• Starting with chapter 3, the requirements notation is extended as following: If a
requirement is met its referenced with <R.x>X, if not it is crossed out <R.x>�.

• Inside of VSL paths (2.2.1) angle brackets are used as parameter placeholders, e.g.
get /search/geometriesIn/<�oor>.

• Footnotes1 are placed at the bottom of the page they are referenced from.

If you read a digital version of this document, all references mentioned above including
URLs are hyper-links directing you to the corresponding pages.

1Like this example footnote.

1.2. Task de�nition and environment 3

1.2 Task de�nition and environment

Within this thesis, my task is to create the foundation and a prototype for a �oor plan
based user interface (UI) for smart spaces. The constraints are, that it is implemented
as web app and that this UI should be as �exible as the underlying middle-ware. Its
primary target platform are tablets, but it should be also usable on desktop PCs.

This work is part of the DS2OS (Distributed smart space orchestration system) research
project2. The idea and theoretical background were introduced with the dissertation of
Marc-Oliver Pahl [1]. Now a group of 5 to 20 students bring these concepts to life. The
middle-ware (Virtual State Layer, VSL) provides an abstract representation for individual
devices and their attributes, reusable services which can be exchanged between sites
via a smart space store.

Figure 1.1 shows this work’s area circled in red using the DS2OS context concept. This
work includes creating an UI service and a ‘geo’ service. The geo service should provide
the back-end features required to implement a �oor plan based UI, like positioning of
individual devices and reasoning in 3D space. Everything else is provided by other
members of the project or is not part of this work.

5.1. Introduction 183

5.1 Introduction

This chapter contains the main contribution of this thesis, the Virtual State Layer

(VSL) programming abstraction that comprises:

• A dynamically extensible meta model that is used to define context models.

• A dynamically extensible global collaborative self-managing ontology.

• Globally shared abstract service interfaces.

• The separation of logic and state in service implementations.

• A novel concept called Virtual Context that allows to use (descriptive) context

models for directly coupling services.

A possible implementation of the programming abstraction is introduced with the

Virtual State Layer (VSL) µ-middleware in Ch. 6. Additional functionality such as

service management and real-world deployment support are introduced on top of the

VSL µ-middleware using the VSL programming abstraction in Sec. 7.

In the remainder of this thesis, the term VSL is typically used to describe the con-

ceptual layer that contains the knowledge base of a Smart Space instance.

5.1.1 Embedding of the VSL in the Real World

Sec. 3.1.2 structured the problem space pervasive computing into seven layers of ab-

straction and four functional rings in Fig. 3.1. Fig. 5.1 shows the embedding of the

VSL programming abstraction in this topology.

Knowledge Agent

Context
Repository

Context Manager

Adaptation

ActuatorSensor

Adaptation Adaptation

subscribe notify
getset

Service UI Service Service Service

subscribe notify
getset

get/ set
Virtual Node

Heterogeneous
Smart Devices

Bidirectional
Adaptation

Context Management
(VSL)

Orchestration
Workflows, etc.

People
Interface
Devices

Interface Devices

Physical World

Le
ve

l o
f A

bs
tra

ct
io

n

Ph
ys

ic
al

 W
or

ld

De
vic

es

Se
rv

ic
es

Co
nt

ex
t

Figure 5.1: Context Management Architecture of the VSL with Logic Layers.

The functionality of the layers was described in Sec. 3.1.2 and is summarized on the

left of Fig. 5.1. For basic understanding of the architecture, the VSL entities shown

in Fig. 5.1 are briefly introduced.

Geo Service ServiceService UI Service

Figure 1.1: Context view of the VSL, with a circle around the area this work is focused
at, based on [1, p. 183]

2http://ds2os.org

http://ds2os.org

4 Chapter 1. Introduction

1.3 Thesis outline and methodology

The thesis is structured into seven chapters, the �rst of them being this introduction. The
relations between the individual subsections were also put into a diagram, cf. Figure 1.2.

The next chapter – Analysis – presents challenges of the smart space UI domain, exist-
ing methodologies and available tools:
As the resulting system should work for every smart space, I analyse four existing
spaces, their associated users and their current and future usage scenarios by performing
interviews. The Virtual State Layer (VSL) concepts, terminology, data model and data
access APIs are introduced. The scenarios from the interviews and VSL are combined,
generalized, and use case model is derived.
Back-end: I analyse the previous approach to handle geolocations in the VSL, and draw
�rst conclusions for the future geo model. I introduce geodatabases, their features for
spatial data, as well as associated geometry types and serialisation formats.
Front-end: The terms user interface and usability are formally introduced and de�ned.
Existing �oor plan representations and UIs are investigated: Classic architecture �oor
plans; three web map services presenting indoor data; and three �oor plan views actually
designed for smart spaces. The origin and background of apps, tablets, and their oper-
ation systems are explained. Di�erent ways to create and distribute apps for multiple
platforms are introduced. I introduce human interface guidelines as way to build apps
with good UI and usability. Di�erent ways of optimizing UIs for spaces and its users are
discussed. The subsection closes with building blocks: JavaScript as environment, the
mindset of its developers, and the libraries and components for this project’s use case.
Finally, all artefacts of the analysis chapter are compiled into a list of requirements.

Chapter 3 presents other products and prototypes (Related work), and compares their
visualisation approaches, data model, and vendor independence. We take a closely look
at the openHAB project, ABB-free@home, and Apple’s HomeKit. The merged results
are presented with an comparison table.

Chapter 4 presents this thesis’s chosen approach. I develop a system architecture and
design to resolve the challenges resulting from the requirements in�uenced by ideas
from related work. Again, I divide into back-end and front-end. Back-end: De�nition of
the geo data model and the geo service API. Front-end: Selection of libraries, speci�cally
the web application framework, as well as the web map library. De�nition of the front
end software architecture as well as the development of the graphic UI design.

Chapter 5 reports relevant implementation details and gives examples from the code
base. The structure is similar to previous chapter: First the back-end with focus on
the database schema and geo service features. For the front-end: Screen shots and
textual description of the web app prototype, the interaction with the back-end, and
implementation of UI extensions.

1.3. Thesis outline and methodology 5

Chapter 6 evaluates how the goals and requirements stated during analysis are ful�lled
by the implementation. Depending on requirement, di�erent procedures are necessary:
Some functional requirements and constraints can simply be checked of, others require
measurement setups or tests with actual users.

Finally the document concludes with an round-up of the results and outlines future
work in chapter 7.

Figure 1.2: Structure of this document

7

Chapter 2

Analysis

Brief summary:

The goal of this work is to provide the foundation and a prototype of a �oor plan based
user interface for smart spaces implemented as web app. It’s target usage devices are
tablets and PCs.

This chapter introduces the reader to the problem domain. The �rst two sections are
about a user survey and provide current and future usage scenarios for smart spaces.
These scenarios are then used to build a use case model. In the other part of this chapter
I work out the relevant issues and determine which problems exist, separated by back-
and front-end. I look into the available methodologies and tools and search for state-of-
the-art technology addressing the research problems. Finally the chapter closes with a
list of requirements.

8 Chapter 2. Analysis

Extended summary:

The resulting system of this thesis should work for every smart space, whether it is an
apartment, a house, a workplace or an other shared space. Therefore I analyse each
of these spaces, the associated users and their current and future usage scenarios in
section 2.1. I select four di�erent spaces and do several formal and informal interviews.
The interviewees use the systems eQ-3 FS20, openHAB, Crestron DigitalMedia, and
KNX.

In section 2.2, the Virtual State Layer (VSL) concepts, terminology, data model and data
access APIs are introduced. Through visionary scenarios, I introduce the main idea for
this thesis: To build an user interface which is as dynamic as the VSL data model.

Section 2.3 combines and generalizes the scenarios and I derive a use case model. The
use-cases are split into daily operation of devices (switch light on); meta data man-
agement (device locations, �oor plan, users and their rights); service management and
development; and system debugging.

Section 2.4 deduces the necessary adjustments to enable the VSL back-end to answer
questions like “Which lamps are in the living room?”. To achieve this goal, the back-end
needs to understand what a living room is and which entities are a lamp. I draw �rst
conclusions for the building model from the spaces descried in section 2.1. To solve
the resulting problems, it makes sense to rely on existing components. Therefore I
introduce geodatabases and their features for spatial data.

The last big section (2.5) �nally deals with the actual user interface. The terms user
interface and usability are formally introduced, de�ned and explained. I discuss di�erent
ways of optimizing UIs for spaces and its users, explaining where apps, tablets, and
their operation systems originate from. I further explain the di�erent ways how to
create and distribute apps for multiple platforms. I investigate if there are any rules one
can follow to build a web app with good UI and usability and conclude that the DS2OS
project might bene�t from creating own guideline documents. The section closes with
the building blocks for my web app, especially JavaScript as environment, the mindset
of its developers, and the libraries and components for the project’s use case.

I close the chapter with a summary of the compiled requirements as a list (section 2.6).
The individual requirements are referenced with <R.x> through the whole chapter.

2.1. Problem domain: smart spaces 9

2.1 Problem domain: smart spaces

This section further introduces the reader to the problem domain by collecting require-
ments and usage scenarios for smart spaces. Typical practices to collect requirements
and usage scenarios include interviews, questionnaires, user observation, workshops,
brainstorming, use cases, role playing and prototyping [2]. As I am to construct a
research prototype, there are no real users yet. Nevertheless I can ask existing and
potential smart space users what kind of requirements they come up with. As this
prototype should work for every smart space, whether it is an apartment, a house, a
workplace or a other shared space; I need to interview at least one person for each one
of these space types. The next subsection describes the methodology of these interviews,
the remaining ones are about the individual spaces. Table 2.1 gives an overview about
the chosen spaces and interviewees.

private commercial

single apartment
Munich

single house
Augsburg

Hackerspace
Bamberg

University building
Garching

interviewee IT project manager IT specialist web developer head of
multimedia group

researcher

interviewee age ~40 years ~25 years ~25 years ~50 years ~30 years

number of
space users

normally 1,
sometimes guests

normally 1,
maximal 5

association has 48 members,
in average 8-10 present

~765 employees,
with students ~5064 users

number of
rooms

4 ~20 7 ~700

structure living room with kitchen,
work- and bedroom,
bathroom,
attic

two-storey house with
basement.
per floor: living room,
kitchen, bathroom, bedroom,
guest rooms, winter garden,
foyer, laundry, garage

ground floor
two main rooms:
lounge and hackcenter,
workshop, project room,
CNC room, kitchen, WC

592 offices,
40 - 50 groups with meeting, seminar
and lab rooms
4 bigger lecture rooms
3 lecture halls

smart space
implemented?

since 12 years
eQ-3/ELV FS20,

in planning phase
with custom hardware

OpenHAB 1
with custom hardware

partial (lecture halls, corridors)
Crestron DigitalMedia, KNX

�1

Table 2.1: Overview about the chosen spaces and their related interviewees

2.1.1 Interview preparations

Before doing the actual interviews some preparation is needed. [2] [3]

To structure the individual interviews I prepared a mind map, which was then trans-
formed to a table to be extended with the answers and edited with a spreadsheet program.
The �rst three columns on the left are used for the areas, topics, questions together
with expected and example answers. Each topic/question has it’s own row. The other
columns from left to right are for the individual spaces and interviewed people. The
order of the areas and rows was changed after the �rst two interviews.

The �rst section is meta information: The name and occupation of the interviewees, the
smart space type, and the kinds of devices they want to control in their space (desktop

10 Chapter 2. Analysis

pc, notebook, smartphone, tablet computer, smartwatch). The last two meta questions
are about the number of users and the structure of the space, e.g. which rooms it has.

The next sections are about existing and planned systems, separated into sensors, UI,
and others. The �rst two interviews showed that this separation did not really work. In
the following interviews the structure is topic based.

The idea of these sections is to give the interviewee a sense of what kind of devices a
smart space could actually consist of. For example, in a radio show1 where the host and
his guest talked for an hour about the guest’s Wi-Fi presence-based heating automation
system, the guest was somehow confused when the host asked if he also wanted to
control his roller blinds.

The system inputs asked for included the opening state of windows (reed contact),
motion- or presence- or brightness-sensors, cameras, smoke detectors, indoor tempera-
ture and humidity sensors, outdoor wind sensors, and brightness sensors. I also asked
for the location of meters (power, water, gas) or dedicated heat cost allocator devices.

The systems we spoke about were lighting (intensity and colour changeable); heating,
ventilating, and air conditioning (HVAC); audio (loudspeakers, stereos, radios with and
without Wi-Fi) and video (TV sets, other screens, projectors); AV receivers, ampli�ers,
and controllers; communication (telephone, door intercom); and security (�re, burglary,
access control).

I additional asked how the communication between individual users is performed, e.g.
are there electronic mailing lists or is a chat or instant messaging system commonly
used (IRC, Whats App, Facebook)? Questions asked regarding attendance detection: Is
there a calender system? Does everybody have a smartphone? Is there an obligatory
time and attendance system?

The UI list consists of traditional light switches, control panels (e.g. touch screens or
�xed plates with building plan and hardware buttons), or desktop PC software.

The questions regarding UI in general were:

• Who is currently using which interface?
• Who creates the automation rules?
• Is there an existing building management system?
• Where is need for improvement?
• Is a combined all-in-one interface/app possible or meaningful?
• Is a building plan useful or not?
• Should there be a graphical automation rule editor, or would the interviewee

prefer a scripting language to orchestrate everything?

All interviews were done in spring 2015 and recorded in separated audio tracks for

1https://cocoapulver.de/2015/02/09/cp008-hausautomation-mit-intelligenz/

https://cocoapulver.de/2015/02/09/cp008-hausautomation-mit-intelligenz/

2.1. Problem domain: smart spaces 11

interviewer and interviewee. In most cases they were done at the corresponding space.
The post-processing included removing pauses and adding chapters, so individual state-
ments can be located more easily. I did not create a full transcript, like it is done in
social science [3]. Some recordings are available online at http://andreas-hubel.de/
serie-smart-spaces/.

The rest of this section presents the results, grouped by each space.

2.1.2 Single apartment Munich

The interviewee lives alone in a typical urban three room apparent and has built an
homogeneous automation system in his home over the last 12 years. His apartment
consists of four areas: living room with integrated kitchen, combined work- and bed-
room, bathroom, and a storage room in the attic. Compare Figure 2.1 – the entrance
door is at bottom middle, the attic is not depicted.

Figure 2.1: FS20 Windows UI with �oor-plan customized and extended by owner

He uses only o�-the-shelf components from one manufacturer. The unidirectional
system is called FS20 and is developed by eQ-3. It is distributed in Germany by Conrad
Electronic SE and ELV Elektronik AG.

His typical daily scenario:

The owner comes home from work and opens his door by key. If it is dark
outside (based on the time) his home turns the lights on. Then he has to

http://andreas-hubel.de/serie-smart-spaces/
http://andreas-hubel.de/serie-smart-spaces/

12 Chapter 2. Analysis

authenticate himself by pressing buttons on a wall mounted remote control
to disarm the burglar alarm.

He goes to his desk in the second room and authenticates himself by pass-
word. This activates the power for the PC displays and other components,
which would otherwise be on the whole time.

When it is time, his home reminds him to go to bed by turning on a lava
lamp.

When he gets up in the morning, the way to the bathroom passes through the living
room. In summer the bathroom is lit by three lamps instead of just one, as the natural
illumination in bathroom is darker than the living room lit by the sun.

Although present everywhere, motion detectors only manage the lighting in the hall
area and in the bathroom. In the living room and bedroom, the lighting is intentionally
controlled manually.

In the areas where the lights are not controlled automatically, he uses battery driven
remote controls: either unlabelled four channel wall-mounted push buttons (Figure 2.2a)
or one of his portable ones (Figure 2.2b and 2.2c).

The software GUI shown in Figure 2.1, is actually quite rarely used: “The apartment
takes care of everything. You need the graphical interface only when something does
not work or a special situation arises.” <R.13>

To use this GUI from a mobile device he uses the desktop sharing software TeamViewer
because he does not want to manage and con�gure a second user interface. Since
he switched from light bulbs to LEDs, the brightness is controlled by the number of
switched-on lamps and no longer by dimming.

According to himself, his approach would not work when he would share his home
with other people. When guests use the bathroom (see Figure 2.1) the light enables
automatically when they step into the room. But instead they try to �nd out which of the
four buttons beside the bathroom door (Figure 2.2a) they have to press. Unfortunately
one of these buttons is central o�. Quote: “I tell my guests: ‘Do not push anything. The
system will get mixed up, you get mixed up.’ ”

All overnight guests get an own bedside lamp having absolute control via a cord switch.

2.1. Problem domain: smart spaces 13

(a) wall-mounted remote at bathroom door (b) �xed remote at entrance

(c) portable remotes with labels

Figure 2.2: FS20 Hardware UI devices

14 Chapter 2. Analysis

2.1.3 Single house Augsburg

The second interview revolved around a two family house, which currently only has one
inhabitant. The home automation system is still in the planning phase. In the default
case, when he comes home, he does not want to touch any light switch as illustrated by
following visionary scenario:

Because he visited a customer in a distant city, the only inhabitant of the
house was a few days out. On the way from the airport to his home – drive
duration 2 hours, the oil heater turns on and warms up the ground �oor
radiators. The upper �oor apartment is currently not in use and therefore
remains cold.

When the car is one kilometre away, the driveway gate opens. When he
approaches his property, the garage door opens just in time, no waiting
time occurs. When the ignition is turned o�, the garage door closes again.
He opens the front door with his house key and the hallway light activates
automatically. Upon entering the dining room, the light is automatically
turned on and the hallway light is turned o�. Together with the light, the
music or radio show he was listening to in the car travels with him from
room to room.

Today, his home does not know in which room he is and the transmitting range of the
gate remote control is not far enough.

At the time of the interview, he was planing to design and build an custom printed
circuit board (PCB) which should contain a passive infra-red sensor for motion detection,
temperature, relays and several general purpose input/output (GPIO) pins. This PCBs
are then deployed in every room above the door. The main light and the light switch are
directly connected to it. For security reasons all communication should go over wires
and not via radio. The system should be hosted locally in the house and no data should
be stored in an internet cloud <R.24>. He explicitly does not want an electronic lock to
ensure that he can always get into his apartment, even if he has totally messed up his
smart home con�guration.

Main motivations:

• cost and risk reduction (e.g. forgotten basement lamp: energy and �re safety)
• increased comfort: controlling radiators manually currently makes up quite a lot

of work
• to not rely on feeling but concrete data. Example: Should the blinds stay open to

let the sun heat up the building as it is a sunny day? Close the roller blinds in the
evening to prevent fast cool down?

As he wants to control everything automatically, why not remove all UI like light

2.1. Problem domain: smart spaces 15

switches? He answered that light switches are still needed, because there are always
exceptions: For example, when he is playing a board game together with guests and
they would turn on a �lm in parallel. When the projector has been turned on, the light
would dim and roller blinds would be closed. But on the table the game taking place,
there is still a need for light. Therefore some UI is needed to turn on these spots above
the table. In the best way, without a walk to the light switches on the wall.

Would it make sense to display a �oor plan, or would a hierarchical menu be more
useful? He said he personally would manage a hierarchical menu better, presumably.
But only because we would know where to search for speci�c items. His visitors would
probably cope better with a spatial illustration on a building plan.

Regarding the orchestration rule editor, he can not imagine that a graphical editor
would work for him. His orchestration ideas:

• House should wake him on the basis of important dates on his calendar, e.g. by
opening the shutters, enabling all lights and playing music in the room in which
he fell asleep, whether this was his bedroom or the living room, until he �nally
awakes.

• Washing machine starts one hour before arrival, so the laundry is not laying wet
in the machine for several days until he returns. Of course, the laundry has to be
placed in the machine before departure.

Other notable pieces: Each person, who stays longer than one day, will get an own
account in his wireless guest network. He plans to order a digital electricity meter from
his power utility.

16 Chapter 2. Analysis

2.1.4 Hackerspace Bamberg

This subsection is about a community-operated workspace with about 50 members. In
the evenings, in average 8–10 persons are present in the space at the same time. The
starting point to build their space automation was the problem of turning o� all devices
when the last member leaves the building. Quoting the interviewee:

“With the growing number of projects, the switching on/o� options were
becoming more exciting and varying:

When you where the last one to leave the space, you had to turn o� fuse A,
but not fuse B, as that’s the refrigerator. [...] There were switchable power
strips everywhere: Some had to be switched o�, to turn down the audio
ampli�er, others – like the one the Raspberry Pi was connected to – must
not be switched o� by no means. In the end, even for those who created
these projects, it was so confusing what they had to switch o� and what
not.

All of our 50 members have closing authority and each of them could
potentially be the last person to leave the building.

Our �rst solution was to write a manual. It was three pages long, causing
it barely read.

Eventually we realized: We need a ‘shutdown button’ per room. When
you leave a room today, you can switch o� all lights with one button.
Although there is a global ‘shutdown button’, users prefer to check visually
if everything has been turned o� per room.”

The interviewee made me aware of smartwatches as possible UI, sunrise and sunset
are easier obtained via internet data sources and not via outdoor brightness sensors.
They have an AV receiver with Ethernet port and plan to build a decentralized audio
routing setup. They use internet relay chat (IRC) and mailing lists for communication.
The number of persons present is detected with a voluntary to use system, based on
MAC addresses of personal laptops and smartphones. A signal when the dishwasher is
done and can be emptied would be nice in future.

The motivation to introduce a home automation system was the central o� switch
(per room), but also the prospect to reduce power consumption and to reduce the �re
likelihood by disabling soldering irons.

The most used interface in the two main rooms is a dedicated android tablet �xed to the
wall of each room, see Figure 2.3. This tablet shows the menu of this room, implemented
with OpenHAB 1.0. Nearly nobody uses their own smartphone to control the room,
instead the tablet is preferred <R.8> <R.10>.

2.1. Problem domain: smart spaces 17

Figure 2.3: HABDroid on a wall mounted Android tablet in Backspace Bamberg
[https://www.hackerspace-bamberg.de/Datei:Tablet.jpg]

To the question whether separate apps compared to an all-in-one app would be prefer-
able the interviewee emphasized vendor independent solutions and did not like the idea
of switching apps for di�erent devices. He pointed out that a 2D building plan would
have some problems with their shelf lights, where each bay can be set to a di�erent
colour <R.5>. For orchestration he personally preferred a scripting language over a
graphical editor, but assumed that end users would need a graphical version. Their
most advanced rule-set is a ‘scavenging alarm’: It reminds the users of the space to
clean up the space 8 to 14 days after the last alarm, when the door is not locked and no
one is watching a �lm. The alarm is only issued between 16:00 and 23:00 when there
are at least four members present for more than one hour, see Listing 1. Another rule
decreases the audio volume level when somebody rings on the door.

https://www.hackerspace-bamberg.de/Datei:Tablet.jpg

18 Chapter 2. Analysis

1 var Number alarmNotBeforeHour = 16, var Number alarmNotAfterHour = 23

2 var Number minimumIntervalDays = 8, var Number maximumIntervalDays = 14

3 var Number minimumMembersPresent = 4

4

5 rule "Check for cleanup alarm"

6 when

7 Time cron "0 0/23 * * * ?" /* Check every 23 minutes */

8 then

9 // We need to convert it to yodatime before using it with historicState or changedSince

10 val lastCleanupJodaTime = new DateTime((lastCleanupAlarm.state as DateTimeType).calendar.timeInMillis)

11 val randomValue = Math::random

12 logInfo("cleanupAlarm", "Checking for conditions for cleanup")

13 if(cleanupAlarmEnable.state == ON &&

14 // Only if the door is not locked (which may indicate sleeping members) and

15 doorLock.state == OPEN &&

16 // no one is watching a movie (do not want to interrupt people)

17 projector.state == OFF &&

18 // The memberCount should be above a sane value, because no one want’s to clean up alone.

19 memberCount.state >= minimumMembersPresent &&

20 // Also check if the members are at least an hour here, so one can just sit and relax for a while.

21 memberCount.historicState(now.minusHours(1)).state >= minimumMembersPresent &&

22 now.getHourOfDay() >= alarmNotBeforeHour && now.getHourOfDay() <= alarmNotAfterHour {

23 logInfo("cleanupAlarm", "Criterias met, checking for last alarm + random")

24

25 // Also check if there are different members than the last time

26 if(!cleanupAlarm.changedSince(now.minusDays(minimumIntervalDays)) &&

27 memberNames.state != memberNames.historicState(lastCleanupJodaTime).state &&

28 randomValue > 0.9) {

29 sendCommand(cleanupAlarm, ON);

30 // No matter what, maximumIntervalDays is enough. We have to clean up. Seriously

31 } else if(!cleanupAlarm.changedSince(now.minusDays(maximumIntervalDays))) {

32 sendCommand(cleanupAlarm, ON);

33 }

34 }

35 end

Listing 1: Orchestration in Hackerspace Bamberg via openHAB rule: scavenging alarm

2.1.5 University building Garching

The last building in question is the home of the faculties of mathematics and informatics
of the Technische Universität München. There work about 765 employees with an
o�ce (head count, without student research assistants), and up to 5000 students2. The
building is made up of four to �ve �oors, has 592 rooms classi�ed as o�ce and a usable
�oor space of about 28.000m2.

The ‘smartness’ of individual building areas is inhomogeneous. When moving into the
building in 2004 all was uniform, but with time extensions and upgrades were made.

2O�cial numbers as of end of 2013, source: https://www.tum.de/fileadmin/w00bfo/www/TUM_in_Zahlen/TUM_in_Zahlen__2013_WEB.pdf

https://www.tum.de/fileadmin/w00bfo/www/TUM_in_Zahlen/TUM_in_Zahlen__2013_WEB.pdf

2.1. Problem domain: smart spaces 19

Figure 2.4: Home of the faculties of mathematics and informatics of the Technische
Universität München from Uli Benz (TUM) https://mediatum.ub.tum.de/node?id=614549

The main auditoriums are quite automated and were last updated in 2014, whereas
the seminar/meeting room of a single chair/group is comparatively simple equipped.
The KNX �eld bus terminates at the utility room of each section per �oor and is not
available in the individual o�ces. Thus only the large lecture halls, and master control
functions such as lighting in the hallways, blinds per �oor and façade are controllable
via KNX. Besides there are two other building wide control networks: one for the air
cooling units and another one for the RFID locking system (based on RS-422). Both are
typically deployed in rooms larger than an o�ce.

This building distinguishes signi�cantly from the spaces presented in the other sections,
both in size and number of users. Therefore a single person can not describe all require-
ments for all stakeholders. It’s necessary to cluster the various user groups and consult
them separately. However, there are not always hard boundaries between groups. I split
the responsibilities into di�erent roles, where of course an individual can hold multiple
ones:

• Occupant: People having a key for at least one room, e.g. sta�, students who
work paid part-time or writing their thesis (like myself).

• Lecturer: in the auditorium: researchers, including professors, in seminar room
additionally students – whether as a tutor or presenting their work.

• Support/Operator: People which are called e.g. by phone when something is not
working.

https://mediatum.ub.tum.de/node?id=614549

20 Chapter 2. Analysis

The rest of this section is structured as follows: First I describe today’s daily routine
of each role in form of scenarios, then future usage scenarios. The section closes with
background information and a few anecdotes.

Occupant

Occupant enters the building by one of the entrances. He goes through the inside
courtyard (local alias ‘Magistrale’) to the stairwell to his group’s area (‘Finger’). Passing
the kitchen he �nally opens his o�ce door. If it is too dark or no colleagues are there
yet, he uses the light switch. He sits down at his desk and starts with his work.

Lecturer (in lecture hall)

Through a motion detector in the desk area the system determines that the lecturer has
arrived. She touches the screen on the speaker’s desk and the audio equipment in the
room is activated. The lecturer typically either uses the blackboard or the projectors.
Let’s assume she presents with her laptop: She connects the computer via VGA or HDMI
to the outlets on the desk. Now she has to decide which of the projectors she wants
to use. As explained by a lea�et �xed to the desk, she has to select the outlet she uses
as source and selects one or multiple sources by touching the corresponding projector
buttons within �ve seconds, compare Figure 2.5. The selected projectors are switched
on and the corresponding projection screens descend. If the projection is di�cult to
read, she has to close the window shutters or regulate the lighting – but only in the
front seating rows so that students in the back do not fall asleep. The lecture recording
is automatically started based on the schedule of the room.

When the lecture is �nished, she shuts down the system with the o� button in the top
right (Figure 2.5). All equipment is switched o�, shutters, projection screens and black-
boards return to their initial position. Lights are turned down so only the passageways
are lit. When she leaves the room, she can fully darken the room with a classic wall
push-switch.

Lecturer (in seminar/meeting room)

When the lecturer arrives he has to power on the projector manually with a tethered
infra-red remote and select VGA or HDMI as input. To control the lights, he has to go
to the entrance door on the other side of the room. To reduce the audio noise level,
it sometimes makes sense to turn o� the air conditioning/circulation unit during the
lecture. While there is a built-in mechanical ventilation, during a longer usage period a
forced ventilation by opening windows in a break can be helpful.

It can take 3-10 minutes, until a new computer communicates correctly with the pro-
jector. Therefore in sessions with multiple lectures, presentation slides are collected in
advance and played from a dedicated computer of the chair.

2.1. Problem domain: smart spaces 21

Operator, Technical support sta�

The daily routine is like a regular Occupant, but they have to login/logout to time
recording system with the locking system RFID token as they are non-academic sta�.

Room 0.08.15 calls via phone: The notebook is connected but the projector only shows
a black screen. Operator connects to rooms media system, sees lecturer has occidentally
muted the projector, unmutes it and tells lecturer how to handle this in future.

Other lecturer calls from o�-site campus extension: He needs access to a seminar room.
Operator opens �oor plan, searches corresponding door and activates release buzzer.

Receives mail from projector: air �lter or lamp has to be exchanged. Schedules clean-
ing/replacement for the next morning.

2.1.5.1 A�ordable vision seminar/meeting room

When the lecturer arrives he connects the presentation notebook via VGA or HDMI. The
notebook recognises in which room it is via the projectors serial number (communicated
via the EDID back-channel part of the VGA/HDMI connector). The software opens a
UI window allowing the lecturer to select which kind of presentation he wants to
hold. The blinds, lighting and ventilation is set to the corresponding state. He can
intervene manually via the same UI without the need to search for the remote or to go
to the entrance door on the other side of the room. When there is a break during the
session, the UI reminds the lecturer to open the windows to refresh the air via a desktop
noti�cation.

2.1.5.2 Vision auditorium

Through a motion detector in the desk area the system determined that the lecturer has
arrived. The touch display lights up and welcomes the lecturer by her name. (Through
the Campus Management System the auditorium is aware which lecturer and which
lecture is here today.)

She unlocks the touch screen with her university employee RFID card and the audito-
rium adapts itself based on their preferences: the projection screens or blackboard are
positioned, the audio EQ pro�le optimized for her voice is loaded to the audio processing
unit / ampli�er and the corresponding projectors are turned on.

45 minutes after the lecture started the speaker is reminded via a �ashing message on the
touch display to take a break. Depending on the room the system turns up ventilation
or reminds to open the windows.

22 Chapter 2. Analysis

At the end the system asks the lecturer how many participants actually were there
today. This number is correlated with the Wi-Fi users and course registrations from the
Campus Management System. This allows the operator to move future lectures of this
course to another room if it is too large for the actual number of participants or another
lecture in a smaller room is surprisingly crowded.

2.1.5.3 A�ordable vision o�ce

The o�ce optimizes the lighting for people and plants by controlling lamps and blinds
automatically, depending if someone is in the room and how bright it is outside. The
system alerts the occupant to open the window when the air is stale, as detected via a
humidity or CO2 sensor.

2.1.5.4 Background information and anecdotes

In summer, every day at two o’clock the outdoor vents in my o�ce close. I can not
stop them, my local control buttons do not work any more. After 60 seconds the blinds
rotate about 30 degrees and the sunlight gets through again. The local control buttons
can be used again to undo this useless automation. <R.27>

The media control systems in the main auditoriums were upgraded in 2014. The previous
system was installed during construction of the building in 2004. The new Crestron
“DigitalMedia 2-series” system controls not only lighting and blinds but additionally
projectors and audio via a uniform user interface (compare Figure 2.5). According to
the local technician, managing this new system is still kind of a hassle: Every change to
the interface has to be compiled to a new binary which needs to be uploaded onto the
system. A full re-upload of the con�guration of one system takes about 15-25 minutes
and requires usage of multiple Windows programs – SIMPL Windows for logic/processor
con�guration, VisionTools Pro-e for UI design, Crestron Toolbox for uploading �rmware
and con�guration. For more insight into the process see Crestron 2-Series Control
Systems Reference Guide3 or video tutorial from third-party programmer4. This tool
chain can also generate Windows executables and ActiveX components which only
work with Microsoft’s web browser. (ActiveX is outdated technology.) According to the
Crestron web pages the newer generation systems also have an web interface, so this
two/three year old system is already outdated again. As the local technicians have no
system to test and there is no “processor simulator”, all changes on the system are done
by an external contractor. <R.21>

3http://www.crestron.com/downloads/pdf/product_misc/rg_2-series_control_systems.pdf
4https://www.youtube.com/watch?v=-mu3MmNkr_Y

http://www.crestron.com/downloads/pdf/product_misc/rg_2-series_control_systems.pdf
https://www.youtube.com/watch?v=-mu3MmNkr_Y

2.1. Problem domain: smart spaces 23

Fi
gu

re
2.

5:
U

sa
ge

�o
w

of
to

uc
h

sc
re

en
on

m
ai

n
sp

ea
ke

r’s
de

sk
in

bi
g

au
di

to
riu

m

24 Chapter 2. Analysis

2.2 VSL and DS2OS

In the �rst section of this chapter I presented di�erent spaces, their associated users and
their current and future usage scenarios. I now introduce the system, I am to design a
graphical user interface for. This system is called Virtual State Layer (VSL) and is a set
of concepts for Smart Space Orchestration published by Marc-Oliver Pahl in 2014 [1].
Together with it’s foundation services, the VSL provides a middle-ware for modelling,
accessing and processing information about a smart space and it’s devices.

As described in Chapter 1 (Introduction) the VSL’s goals are to connect previous in-
compatible devices through one uni�ed namespace, reusable services distributed via a
global exchange platform, and good usability for users and developers, with security in
mind.

To explain the di�erent concepts I introduce an excerpt of the TUM Autonomic Home
Networking (AHN) lab setup, as shown in Figure 2.6. In this setup we use one Knowledge
Agent (KA) with three VSL gateway services. Gateway 1 connects lamps via simple radio
controlled outlets and a Raspberry PI based 433 MHz transceiver, gateway 2 connects
the blinds of the room via an Arduino with Ethernet shield and relays, and gateway 3 a
8-way web controllable 19-inch power plug array.

433 MHz transceiver

SHE

8x ethernet power switch Arduino

Relais

Figure 2.6: TUM Autonomic Home Networking lab in December 2016

• Lamp← simple radio controlled outlet← Raspberry PI with 433 MHz transceiver
↔ VSL service via HTTP↔ KA

• Blinds← Arduino with Ethernet shield and relays↔ VSL service via Telnet↔
KA

• 8-way web controllable 19” power plug array↔ VSL service via HTTP↔ KA

2.2. VSL and DS2OS 25

2.2.1 Data model

Figure 2.7: VSL context for AHN lab

The data is called VSL context and is a hierarchical namespace distributed between
all KAs at a site [4]. Each node has one or multiple types, a value – and optional –
named children. The AHN lab context is shown in Figure 2.7 – one might recognize the
three gateway nodes with there assigned devices (lamp, blinds, socket) as children. The
attributes (isOn, closed, angle) of the devices are in turn children of the device nodes.

A node can be addressed via the names of its parents. For the example shown in
Figure 2.7 the path of the isOn attribute of lamp1 is /KA1/gateway1/lamp1/isOn.

The di�erent types of nodes are provided via the Model Repository (CMR, see 2.2.2). All
types are derived from three base types: text, number and list and a fourth composed
type. The type system supports multiple inheritance. The relationships between the
types used at the AHN lab is shown in Figure 2.8. Types have a double role: classi�cation
of the value (boolean, number) and de�ning the semantic meaning (lamp, brightness).
The format of the value might be further de�ned with restrictions, e.g. minimal and
maximal values for numbers or regular expressions for text.

The VSL also provides an authorization system based on client certi�cates and read-
er/writer groups. This allows read-only nodes or hiding of whole sub-trees. As this
mechanism works transparently, this thesis does not go into more detail on the au-
thorization topic: I have to assume that the VSL context can change (e.g. when user
authenticates) and that there are read-only nodes.

26 Chapter 2. Analysis

/basic/ l ist

/basic/ text

/derived/percent

restrictions:
 minimumValue: 0
 maximumValue: 100

/gahu/bl ind

/basic/composed

/basic/number/gahu/genericDevice /derived/boolean

/gahu/ lamp

angle

closed

isOn

Figure 2.8: Relationships between types used in AHN lab

Services can add virtual nodes to the tree. The content of virtual nodes is dynamically
created by the owning service.

The information which push button or switch controls which lamp is not part of this
model, as it is stored inside an orchestration service.

2.2.2 Deployment and services inter-exchange

KAs typically run on every computer with enough resources taking part at a DS2OS site.
Such a computer does not have to be a dedicated server or desktop PC: Single board
computers like a Raspberry Pi or home network routers like an AVM Fritz!Box are also
possible KA hosts.

As of December 2016, in the AHN lab only one KA runs permanently. If necessary,
students can connect their notebook to the LAN and start additional KA instances on
their own. KAs discover themselves automatically and allow their registered services
to intercommunicate. For example, the speech recognition service on the students
notebook can access the a gateway service controlling the lamps in the lab. The KA
runs as a Java process in a GNU Screen session, together with the gateway services, as
well as a Web UI server process – compare Figure 2.9. In the VSL concept, this session
is the Service Hosting Environment (SHE), which would also be controllable via the
VSL. The usage of GNU Screen is only a workaround till a real SHE implementation is
available.

VSL services are small programs focussing on one problem, similar to apps on mobile
platforms like Android or iOS. To be reusable in other sites, VSL services should be
generic and modular.

A gateway service is an adapter to a concrete device like a lamp, a washing machine, a gas
heating controller or a building automation bus like KNX. Besides gateways services, the

2.2. VSL and DS2OS 27

Figure 2.9: SHE in AHN lab: GNU Screen session with KA, KA console and other services

VSL includes orchestration, advanced reasoning, and user interface services. Advanced
reasoning services draw conclusions (“Currently it is daytime in winter”) from values
they can access via the VSL (e.g. brightness, temperature). Orchestration services
connect sensors with actors. In the simplest case two devices which can not directly
communicate – like a hardware switch with a lamp from di�erent vendors. The more
complex cases involve save and recall of device settings like a ‘�lm scene’ in a living
room or user preferences regarding the light colour based on current daytime.

Users can share their newly developed and improved services between themselves via
a global repository, the Smart Space Store (S2Store). This store includes the Model
Repository (CMR, see 2.2.1), and other global repositories and services. Each space
where the VSL is deployed is called site. All sites together with the central store form
the DS2OS (Distributed smart space orchestration system).

2.2.3 VSL API

The VSL context can be accessed by a closed set of methods: get and set. To get a
noti�cation on value changes via WebSocket, one can subscribe (and unsubscribe) to a
node.

28 Chapter 2. Analysis

As of January 2017, the KA has a HTTP REST API and uses JSON for its responses.
Therefore a JavaScript client can communicate directly with the KA. The authentication
is exclusively done via client certi�cates and acts transparently: Sub-trees to which
the certi�cate has no access to are not returned by the API. Example responses for get
requests are shown in Listings 2 and 3, an example set request in Listing 4.

To reproduce the requests listed in this section, the client might require an entry in
/etc/hosts for KA1, so requests to https://KA1:8080 do not fail. Each request needs to
use a client certi�cate (e.g. service1 from http://dev.ds2os.org/certificates/) and
a Content-Type: application/json header.

GET /KA1/gateway1/lamp1?depth=1&scope=complete
1 {

2 "types": ["/gahu/lamp", "/gahu/genericDevice", "/basic/composed"],

3 "children": {

4 "isOn": {

5 "types": ["/derived/boolean", "/basic/number"],

6 "restrictions": {"minimumValue": "0", "maximumValue": "1"},

7 "value": "0"

8 }

9 }}

Listing 2: reduced JSON response for a lamp

GET /KA1/gateway2/blinds1?depth=1&scope=complete
1 {

2 "types": ["/gahu/blind", "/basic/composed"],

3 "children": {

4 "closed": {

5 "types": ["/derived/percent", "/basic/number"],

6 "restrictions": {"minimumValue": "0", "maximumValue": "100"},

7 "value": "40"

8 },

9 "angle": {

10 "types": ["/derived/percent", "/basic/number"],

11 "restrictions": {"minimumValue": "0", "maximumValue": "100"},

12 "value": "50"

13 }

14 }}

Listing 3: reduced JSON response for blinds

PUT /KA1/gateway1/lamp1/isOn
1 {

2 "value": "1"

3 }

Response: HTTP/1.1 204 No Content

Listing 4: JSON request to switch lamp1 on5

5In the current AHN lab setup, one would have to use a desired child node to change the value. This
node is part of MAPE concept, which is not explained in this document. See [1, page 320f] for more
information.

http://dev.ds2os.org/certificates/

2.2. VSL and DS2OS 29

To get noti�cations the client has connect to wss://KA1:8080/callbacks with Web-
Socket protocol “v1.vsl.ds2os.org”. The client has to generate a random uuid and sub-
scribe via an HTTP POST request as shown in Listing 5.

POST /KA1/gateway1?depth=-1
1 {

2 "operation": "SUBSCRIBE",

3 "callbackId": "cf255f45-c442-4af8-95f7-1c054ad0093a"

4 }

Response: HTTP/1.1 204 No Content

Listing 5: Example JSON request to register for noti�cations of whole sub-tree of gate-
way1, connected to KA1

The last WebSocket opened with the same client certi�cate, now receives messages with
this callbackId, the changed node’s address and a serial number:

{

"callbackId": "cf255f45-c442-4af8-95f7-1c054ad0093a",

"serial": 33,

"address": "/KA1/gateway1/lamp1/isOn",

"invoke": "NOTIFY"

}

The successful receipt of this message must be con�rmed by the client via a return
message including the callbackId and serial:

{

"callbackId": "cf255f45-c442-4af8-95f7-1c054ad0093a",

"serial": 33

}

When the client terminates, it should destroy the subscription as shown in Listing 6.

POST /KA1/gateway1?depth=-1
1 {

2 "operation": "UNSUBSCRIBE",

3 "callbackId": "cf255f45-c442-4af8-95f7-1c054ad0093a"

4 }

Response: HTTP/1.1 204 No Content

Listing 6: Example JSON request to unsubscribe

As of January 2017, each client requires an own certi�cate – even a second browser tab
of the same web app can steal the other tab’s noti�cations.

30 Chapter 2. Analysis

2.2.4 Programmatic UI, extensible by third party

Every item in the VSL data model can be traced back to a base type, cf. Figure 2.8. When
rules how to create the UI for these base types are de�ned, programmatic creation of
a basic user interface is possible. Let’s revisit the AHN lab as described at the start of
this section (2.2) and Figure 2.7. lamp1 is of type /gahu/lamp which is traced back to
/basic/composed/. The rule for composed is to iterate over all children. lamp1 has only
one child node: isOn, which is of type /derived/boolean. The rule for boolean de�nes a
switch as UI element. The other case in the AHN lab are the blinds: blinds1 is of type
/gahu/blind, which also traces back to /basic/composed, so the UI again iterates over all
children. This time these are closed and angle, both of type /derived/percent. As the
UI does not know this type, it falls back to the parent type /basic/number. The rule for
number has a case distinction: As the restrictions minimumValue and maximumValue
exist, the corresponding UI element is a slider.

2.2.4.1 Scenario: Extensible UI

The thesis’s task description requires the UI to be extensible, so that third party de-
velopers can easily inject new components to the interface renderer – in other words:
Add new rules to the UI. Let me illustrate that extensibility requirement with following
scenario:

The user has radio controllable LED bulbs in his living room. The software control
element is build with three sliders, adjusting the red, green and blue value of the light
(compare left part of Figure 2.10). When he wants to dim the light, all three sliders
have to be adjusted, and he always needs some time to �nd the right colour. As he
is dissatis�ed with this situation, he opens the “Extension Store”. There he �nds an
extension that has only one slider for the colour, a second slider for the intensity and a
toggle switch to turn the light o� (compare right part of Figure 2.10). He hits the install
button and the initial control element is replaced with the new one from the extension.
Now he can switch o� or dim the lights without destroying the colour settings.

Figure 2.10: Simple control for colour lamp; left: simple from developer perspective,
right: simple from user perspective

2.2. VSL and DS2OS 31

2.2.4.2 Scenario: Self-adaptive UI

Preconditions: The overall system (KA including UI) is never interrupted or reloaded.

The user has bought a washing machine with Wi-Fi, connected it already to water
and electricity, and entered the Wi-Fi credentials. The system recognizes the new
machine via auto-discovery methods (e.g. via Bonjour/mDNS) and adds it to an inbox
view. The User visits the inbox view and installs the corresponding gateway service,
which includes a set of washing machine speci�c UI extensions. The icon in the inbox
transforms from a generic to a more speci�c one, titled with the machine’s manufacturer
and type. The user moves this icon from the inbox to the �oor plan. Other instances of
the UI get updated automatically: They now display the new machine in the �oor plan,
and use the accompanying UI extensions when users access the washing machine.

32 Chapter 2. Analysis

2.3 Use case model

In this section I create a use case model through combining the scenarios gathered
during the interviews (2.1), the VSL concept (2.2) and other related work (3). A use case
model consists of the actual use cases and their actors. Actors can be user roles, internal
processes or other external systems [5, sec. 4.4]. The resulting top level use cases with
their actors are shown in Figure 2.11.

The use cases are split into groups: daily operation of devices (switch light on <U.1>);
meta data management (device locations <U.2>, �oor plan <U.5>, users and their rights
<U.6>); service/extension management <U.3> <U.4> and development <U.7> <U.8>; and
system debugging.

<U.1> operate/control devices
<U.2> manage device location: add, update, delete device positions
<U.3> con�gure service
<U.4> install service
<U.5> manage �oor plan
<U.6> manage user, permissions
<U.7> publish service
<U.8> implement service

Occupant is the most common user role of the system – basically everybody who works
or lives in the smart space holds that role. Occupants are able to control the devices in
the rooms they have access to <U.1>. They can switch the lights on (operate), change the
heating schedule (control), modify the orchestration rules (control), or create/change a
scene (control). When they move a standard lamp in their room, they also should be
able to correct the device location inside of the system <U.2>. Inside their room they are
able to change the mapping of sensors to actuators, e.g. which devices the push button
besides their room door should a�ect. Occupants should be able to quickly learn the
basic concepts of the system and are not expected to have programming knowledge.

The Admin role is responsible for the more complex or critical tasks: Modelling the
building inside the system by importing a �oor plan <U.5>. Assigning occupants the
corresponding rights <U.6>. Giving them access to their devices <U.6>. Installing and
con�guring new services which concern multiple occupants, e.g. bringing the central
heating into the smart space orchestration system <U.3> <U.4>.

Developers introduce new ideas into the system or improve existing ones by imple-
menting reusable services in a programming language <U.8>. They publish these im-
plementations at a global Store <U.7>. Other users can �nd them at the Store, install a
service to their local smart space and give the developer feedback. This feedback and
other statistics help other users to �nd interesting services and developers to improve
(their) services.

External systems: The Store is a global o�-site system, providing services to users and
feedback to developers. Devices are other systems inside the smart space (actuators:
lights; sensors: switches/buttons; and third-party gateways)

2.4. Back-end 33

This thesis

Back-end

WebUI2

Owner,
Operator,

Installer/Fitter

Admin

Occupant

Support

debugging

mange
user, permissons

mange
floor plan

mange
device location

operate/control
device

S2Store

Developer,
Expert

implement
service

publish
service

install
service

configure
service

Store

Light, Switch,
Gateway, Device,

Service

Figure 2.11: top level use cases with their actors

The di�erent areas in Figure 2.11 are de�ned in sections 4.1, 4.2, and 4.3.4.

2.4 Back-end Analysis

The previous sections of this chapter presented visions for smart spaces via scenarios
(2.1 and 2.2) which are used to build a use case model (2.3). This section deduces
requirements for the necessary back-end adjustments. The actual user interface (Web
UI 2) is treat in section 2.5.

34 Chapter 2. Analysis

In this section, I analyse the previous approach to handle geolocations in the VSL, and
draw �rst conclusions for the future geo model (2.4.1).

The back-end should be able to answer questions like “Which lamps are in the living
room?”. To achieve this goal, the back-end needs to understand what this ‘living room’
thing is and which devices are a lamp. Literature often calls this capability ‘seman-
tics’. To solve this problem, it makes sense to rely on existing components such as
geodatabases: The spatial data addons for PostgreSQL and SQLite are introduced (2.4.2).

The components in the back-end and front-end need to exchange geo-data with each
other. As they both support a variety of geometry serializations, a common denominator
has to be found (2.4.3).

2.4.1 Geo data and the VSL

The DS2OS (2.2) has no real speci�cation for geo data yet. The �rst UI prototype
added a geolocation node to the device models in form of an single 3D coordinate with
latitude, longitude and altitude (see Listing 7). Since this approach is too in�exible, the
concept has been changed: Instead of get /KA1/oven1/geolocation the location is now
queried via an own sub-tree implemented via a virtual node by a service, e.g. with get
/KA1/geoservice/locationOf/oven1 or short get /search/locationOf/oven1.

models/demo/oven.xml
<model>

<temperature type="/basic/number" />

<threshold type="/basic/number" />

<isOn type="/derived/boolean" />

<isAlarm type="/derived/boolean" />

<devicename type="/basic/text" />

<geolocation type="/demo/geolocation" />

</model>

models/demo/geolocation.xml
<model>

<lat type="/derived/decimal" />

<lon type="/derived/decimal" />

<alt type="/derived/decimal" />

</model>

Listing 7: VSL geolocations in 2014, in VSL types XML notation

Due to the DS2OS project’s goals, the building model should work for three room �ats,
small houses, as well as for big o�ce buildings, or conference centres. To illustrate
the di�erences, Figures 2.12 and 2.13 shows side views of an exemplary home and the
university building from section 2.1.5.

In general, challenges for indoor building models are:

• rooms which go over multiple �oors e.g. auditoriums, stairs or elevators.
• di�erent �oor heights in some sections of a building
• intermediate storeys
• sub-dividable rooms

The model must be �exible enough to cover these special cases, without becoming too
complex for the default case.

2.4. Back-end 35

As designer of a building model, you have to decide how �ne-grained you want to
map the world. Does everything have to be to the nearest millimetre? Does every wall
surface have to be a separate object in your model?

At OpenStreetMap – a world wide open-data geo wiki database where I’m involved
during spare time – we agreed to allow several modelling variants at once [7], depending
on which level of detail one needs:

For the lowest level of detail, a point of interest (POI) such as a clothes shop is as
extended by the 3rd dimension, the level. The value of this attribute is the European
�oor numbering: 0 is the ground �oor, 1 the �oor over ground �oor (British English:
�rst �oor, American English: second �oor), 2 etc. and -1 the �rst basement �oor.

However, if the human data editor wants to represent more details, the model provides
additional principles: Each room is mapped as an area, compare Figure 2.14. Doors
are simply de�ned as a point, if necessary, with optional width. The area types are
divided into three categories: Area is a special case of a room, with the di�erence that an
area does not has walls. To highlight their importance, corridors where given an own
category. It’s also speci�ed how to model single walls, mainly for graphical reasons.

For a DS2OS geo-data model, the challenge is to �nd the right balance: From the
implementation point of view it makes sense to only allow a single type of coordinate.
The default case should be covered in a simple way, but the complex cases should still
be reasonably possible. It should be possible to annotate each node within the VSL tree
with a geo-location. However, a policy de�ning what this location represents exactly
for each node type is required – e.g. for an 8-channel heating actuator: the installation
location of the actuator, the control valve or the corresponding �oor heating area. For
the occupants probably only the latter is interesting, but a maintenance worker is also
interested in the others.

The other question is how to model relations between individual objects. The naive
approach is to explicitly state individual relations and thus establishing a hierarchy:
Device A is in room B, room B is part of �oor C, �oor C is part of building D. This
approach would not address the challenges listed at the beginning of this subsection:
Think about a mobile device like a projector or overlapping/sub-dividable rooms. I
prefer a �exible approach based on set theory: Every entity is represented by a three-
dimensional (3D) geometry: For devices a point in 3D space might be enough. For
rooms, �oors, buildings, etc. one would use cubes or polygons. If we now want to turn
o� all lights on one �oor, the system only has to intersect geometries with each other
and gets a list of the appropriate devices.

The chosen structure for this work is presented in subsection 4.2.1.

36 Chapter 2. Analysis

Figure 2.12: Sketch and side view of an example home. Sketch derived from [6].

W
C

W
C

W
C

W
C

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Besprechung

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Bü
ro

Hörsaal

• Räume

• Treppenhaus,
Aufzug

• Stockwerke

•

Au
fz

ug

Tr
ep

pe
nh

au
s

Tr
ep

pe
nh

au
s

EG

UG

1.OG

2.OG

3.OG Seminar
raum

z

x

Figure 2.13: Side view of the university building

Figure 2.14: Indoor elements from [7]

2.4. Back-end 37

2.4.2 Geo databases

As the DS2OS should work for small houses as well as for complex buildings a �exible
way of managing geospatial data has advantages. As introduced in the previous section
the position of devices should be speci�ed as point in the 3D space. Rooms and other
extends in the spatial world, are de�ned by an more complex geometry – in most cases
a simple cube.

To �nd all devices in a room the system has to implement set theory, e.g. intersection of
a point with an other geometry. Set theory can either be implemented in an additional
programming layer, or by the database itself. Databases which have special data types
and methods to calculate spatial relationships are called geodatabases. In the open
source database world, there are two serious implementations: An extension called
PostGIS for the heavy-duty database PostgreSQL, and an extension called SpatiaLite
for the lightweight database SQLite. Of course commercial databases have similar
components, e.g. Oracle Spatial and Graph. For further information on the subject
please refer to [8].

Currently the VSL KA (2.2) uses the Java database HSQL. In the future content from
this KA DB could also be moved to the same database as the geo data.

Geometry
ReferenceSystems::

SpatialReferenceSystem

Point Curve Surface GeometryCollection

MultiSurface MultiCurve MultiPoint

MultiPolygon MultiLineString

LineString

Line LinearRing

Polygon PolyhedralSurface

ReferenceSystems::
MeasureReferenceSystem

TINTriangle

+spatialRS

1
+mesureRS

0..1

+element0..*

+element

0..*

+v ertex
2..*

+ring
1..*

+patch1..*

+patch 1..*

Figure 1: Geometry class hierarchy
Figure 1 is based on an extended Geometry model with specialized 0-, 1- and 2-dimensional collection classes
named MultiPoint, MultiLineString and MultiPolygon for modeling geometries corresponding to collections of
Points, LineStrings and Polygons, respectively. MultiCurve and MultiSurface are introduced as superclasses that
generalize the collection interfaces to handle Curves and Surfaces. Figure 1 shows aggregation lines between the
leaf-collection classes and their element classes; the aggregation lines for non-leaf-collection classes are
described in the text. Non-homogeneous collections are instances of GeometryCollection.
The attributes, methods and assertions for each Geometry class are described below. In describing methods, this
is used to refer to the receiver of the method (the object being messaged).

6.1.2 Geometry

6.1.2.1 Description

Geometry is the root class of the hierarchy. Geometry is an abstract (non-instantiable) class.

The instantiable subclasses of Geometry defined in this Standard are restricted to 0, 1 and
2-dimensional geometric objects that exist in 2, 3 or 4-dimensional coordinate space (ℜ2, ℜ3 or ℜ4). Geometry
values in R2

 have points with coordinate values for x and y. Geometry values in R3
 have points with coordinate

values for x, y and z or for x, y and m. Geometry values in R4
 have points with coordinate values for x, y, z and m.

The interpretation of the coordinates is subject to the coordinate reference systems associated to the point. All
coordinates within a geometry object should be in the same coordinate reference systems. Each coordinate shall
be unambiguously associated to a coordinate reference system either directly or through its containing geometry.

The z coordinate of a point is typically, but not necessarily, represents altitude or elevation. The m coordinate
represents a measurement.

All Geometry classes described in this standard are defined so that instances of Geometry are topologically
closed, i.e. all represented geometries include their boundary as point sets. This does not affect their

14 Copyright © 2010 Open Geospatial Consortium, Inc.

Figure 2.15: OpenGIS SQL Geometry Type hierarchy from [9]

38 Chapter 2. Analysis

2.4.3 Geometries

The components to be used in the back-end (geodatabase, 2.4.2) and front-end (web
map library, 2.5.6.3) support a variety of geometry serializations. Since both exchange
data with each other, a common denominator has to be found. Therefore this section
presents di�erent geometry types and their serialisation formats. It closes with Table 2.3
comparing the relevant capabilities of these components with each other.

For this work I need polytopes in dimensions 0, 2, and 3 – points, polygons and polyhe-
drons. All in 3D space. A point consists of a single coordinate, so three �oat numbers.
Polygons de�ne an area (in one plane). Three-dimensional areas like a building require
a cube or generalized a polyhedron. To describe geometries in computers, there exist
di�erent models – relevant for this work are WKT and GeoJSON:

Well Known Text (WKT) is a markup language that extends the SQL standard to add
geometries. It is the “human-readable version” of its binary cousin (Well Known Binary,
WKB) in which the geometries are stored in the database’s memory. The underlying
data models and hierarchy are shown in Figure 2.15.

GeoJSON is an open standard format designed for representing simple geographical
features, along with their non-spatial attributes, based on JavaScript Object Notation
(JSON). Its current speci�cation is RFC 7946 [10].

The various WKT speci�cations and implementations di�er in their feature set: As of
2016, PostGIS’s WKT implements all geometry types shown in Figure 2.15, SpatiaLite
only polytopes up to dimension 2 – especially not PolyhedralSurface, c.f. Table 2.2.

PostGIS
WKT

SpatiaLite
WKT

GeoJSON

Point yes yes yes

Polygon yes yes yes

PolyhedralSurface yes no no

Feature no no yes

�1

Table 2.2: Comparison of geometry data formats

The speci�cations mentioned above also de�ne geometry functions. However, in the
case of PostGIS and SpatiaLite, the function names di�er slightly. Some of these func-
tions are only de�ned in 2D.

With GeoJSON the situation is similar to SpatiaLite’s WKT implementation: The ‘simple
geographical features’ do not include polyhedra. But points and polygons with 3D
coordinates as well as 3D bounding boxes are supported. GeoJSON, as speci�ed by [10,
Ch. 4], only allows WGS84 long lat as spatial reference system – whereby earlier
versions of the speci�cation allowed other coordinate systems.

Even the most recent OpenGIS speci�cation [9] does not provide a own data type for
closed objects also known as solids: After saving to the database, the original geom-

2.5. Front-end 39

etry of a simple cuboid is not easily recognizable as such. For example with PostGIS
2.3: BOX3D(11 48 2, 12 49 3) becomes POLYHEDRALSURFACE Z (((11 48 2,11 49 2,12 49 2,12 48 2,11 48 2)),

((11 48 3,11 49 3,12 49 3,12 48 3,11 48 3)), ((11 48 2,11 49 2,11 49 3,11 48 3,11 48 2)), ((12 48 2,12 49 2,12 49 3,12 48 3,12 48 2)),

((11 48 2,12 48 2,12 48 3,11 48 3,11 48 2)), ((11 49 2,12 49 2,12 49 3,11 49 3,11 49 2))). For solid 3D functions like
ST_Volume() one has to cast closed WKT geometries to a solid with ST_MakeSolid(),
as shown in Listing 8.

SELECT ST_Volume(ST_MakeSolid(geom))

FROM (SELECT ’POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),

((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),

((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),

((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),

((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),

((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))’::geometry) as f(geom);

Listing 8: PostGIS SQL query to calculate the volume of a closed polyhedron
[adapted from example at http://postgis.net/docs/ST_Volume.html]

3D data format
web map libraries geodatabases

OpenLayers 3 Leaflet Caesium PostGIS SpatialLite

WKT yes via plugins yes yes

GeoJSON yes yes yes yes yes

glTF yes

X3D yes

GML yes via plugins yes yes

KML yes via plugins yes yes yes

�1

Table 2.3: 3D data formats and their support by front-end (2.5.6.3) and back-end software

Further ‘full-3D’ data formats are X3D, glTF, GML and KML. Except for the comparison
in Table 2.3, they are not dealt with in more detail in this work. The chosen geometry
types for this work are presented in subsection 4.2.1.

2.5 Front-end Analysis

The �rst two sections of this chapter presented visions for smart spaces via scenarios
(2.1 and 2.2) which are used to build a use case model (2.3). This section �nally deals with
the actual user interface. I discuss the relevant challenges and which bricks I require to
reach the goals of this thesis.

The �rst subsection (2.5.1) presents a model for user interaction in smart spaces and
further de�nes the area of this work. The “Usability Engineering Lifecycle” – a develop-
ment process to ensure optimal usability – is introduced and correlated to this thesis’s
structure.

As this work’s project de�nition dictates that �oor plans are a large part of the app, I
have to investigate (2.5.2) what kind of �oor plan I need. I review existing solutions:

http://postgis.net/docs/ST_Volume.html

40 Chapter 2. Analysis

Classic architecture �oor plans, web map services presenting indoor data, and �oor
plan views actually designed for smart spaces. As applicable, I iterate over these test
subjects three times: First analysing the graphical �oor plan representation itself, then
indoor map UI elements and in the last run the smart space UI elements. The subsection
concludes with a summary for each subject and derivation of concrete requirements.

After introducing the origin of apps, tablets, and their operation systems, subsection 2.5.3
explains the di�erent ways to create apps, and how to distribute these for multiple
platforms at the same time.

Subsection 2.5.4 investigates, if there are any rules one can follow to build a web app
with good UI and usability. It introduces human interface guideline documents, that
platform vendors provide to third party developers. I conclude that the DS2OS project
is also creating some kind of platform and therefore might bene�t from own guideline
documents.

Subsection 2.5.5 discusses the di�erent ways of dynamically optimizing UI for spaces
and its users. I split the approaches into programmatic UI, customization by end user,
optimization through machine learning and (semi) automatic generation of new exten-
sions.

The �nal subsection (2.5.6) introduces the brick types I need for construction of my
web UI prototype. As web apps are typically written in JavaScript dialects, I give a
short introduction into the environment and mindset of this scripting language and its
developers. I talk about libraries and frameworks providing toolboxes and additional
guidelines for web app development. I come to the conclusion that all three selected
web application frameworks of the current generation are equivalent. The decision
which one to use depends on the associated ecosystem. Therefore I provide a short
overview over the associated libraries especially regarding UI elements and �oor plans.

2.5.1 Development of user interfaces for smart spaces

This section characterises the term user interface (UI) and the UI development process
in the context of the smart spaces. These foundations are extended in section 2.5.4 and
assumed as given in the further course of this document.

If one takes the term “user interface” literally it’s the cut surface between human and
machine, so input and output devices. In other words, the things allowing machines
to talk to us humans, and vice versa. A user communicates with another system by
performing action on an input device (for example a microphone) . This system processes
the action and gives the user a reaction via an output device (for example a speaker).
The user perceive this reaction, processes it, and possibly performs other actions. This
creates a kind of closed control loop. In the case of a smartphone or tablet, input and
output coincide in the same physical device.

Now let me introduce a model for user interaction in smart spaces from [11] [12]: The
authors of this VDE guideline split the overall system into three actors, see Figure 2.16:
user, smart home and service.

2.5. Front-end 41

triggered by sensors reacting to changes in the environ-
ment, with and without intervention from the user. For
example, a smart home environment may decide to
switch on the light because a daylight sensor registers re-
duced daylight, or because the user opens the front door
which is equipped with a sensor. In both cases, the sys-
tem action is provoked without the user operating a dedi-
cated interface. In fact, smart home environments may
even work without any user interface, rendering classical
methods of interface testing difficult to apply.

The word “decide” used in the paragraph above may
imply that the system is sometimes considered to be intel-
ligent, in that it has cognitive abilities and takes decisions
on behalf of the user. Whereas the properties of intelli-
gence are still debated, it is important to note here that a
system may actually be considered as “intelligent” by its
users, thus intelligence becomes a criterion for the eval-
uation, see Section 5. A system may also behave in a per-
suasive way, in that it attempts to induce a specific
behavior in the user, e.g. to do more sports or to save en-
ergy; such persuasive services are also covered by the
guideline.

Smart home systems have frequently been used in an
Ambient-Assisted Living (AAL) scenario, where certain
medical, care-taking and/or comfort functions are provid-
ed to users with reduced abilities. Whereas such scenarios
are not excluded in the guideline, it has to be noted that
particular usability aspects and criteria which are relevant
for AAL (such as user safety, reliability of medical treat-
ments, ethical aspects of care-taking by a machine) are
not covered.

3 Interaction
The guideline considers three actors in smart home envi-
ronment, see Fig. 1: The user, the smart home and the
service.

Figure 1: Schematic representation of an interaction in
the smart home environment.

A user interaction with the system may be triggered in a
classical way through input and output devices. As an ex-
ample, a microphone integrated in the smart home may
be considered as an input device for speech, and a loud-

speaker as an output device. Input and output may how-
ever also take place through general-purpose devices such
a smartphones (with microphone and loudspeaker inte-
grated), with general-purpose user interfaces. Input to the
system may also stem from environmental sensors, or
from user-mounted sensors which cannot be considered
as user interfaces, such as position sensors, heartbeat sen-
sors, and alike. In a similar vein, the output from the sys-
tem may refer to actuators which influence the
environment, and may later be perceivable by the user or
not (such as switching on the light, or changing the heat-
ing setting). Services may also communicate with other
services (e.g. placing an order, asking for human inter-
vention).

Depending on the way input and output take place, it is
advisable to distinguish between implicit and explicit in-
teraction. An explicit interaction from the user is trig-
gered through an input device, whereas an implicit
interaction may be triggered through sensors. The user
may also use sensors for explicit input (e.g. shielding a
brightness sensor to provoke switching the light on).

In order to cope with a multitude of input and output
capabilities, the service needs to interpret and fuse the in-
formation coming from the user, and to classify the in-
formation coming from the input sensors. The semantic
information is then used by the application logic to fulfill
the service, and to further interact with the user. Both tar-
gets can be reached through the output generation logic,
which should determine also the best modality for infor-
mation output (fission).

4 Usability Aspects
The aim of the guideline is to provide practical guidance
to usability evaluation in the smart home. ISO 9241-11
[4] defines usability as “the extent to which a product can
be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified
context of use”. This definition mainly considers the
functional part of it, using effectiveness (i.e. the accuracy
and completeness with which the functions are fulfilled)
and efficiency (i.e. the resources spent in relationship to
the function fulfillment) as criteria. User satisfaction is
considered as a result of function fulfillment, but not fur-
ther specified in that standard.

In order to complement this traditional view on usabil-
ity with non-functional, sometimes called hedonic aspects
[5], the concept of User Experience (UX) has been
brought up. ISO 9241-210 [6] takes a comprehensive
view and defines user experience as “a person’s percep-
tions and responses that result from the use or anticipated
use of a product, system or service”. Although this view
might be very broad [7], it shows that classical perspec-
tives might be too limited in covering all aspects which
are considered to be decisive for a user to successfully
use a service offered in a smart home context.

The guideline further differentiates between ease of use
and joy of use. Whereas ease of use describes the subjec-
tive perception of the user that the system can be used
without any effort [8], and includes the aspects effective-
ness, efficiency, intuitiveness and learnability, joy of use
[9] describes the conscious positive experience during the
interaction. Such an experience is influenced by the aes-

ITG-Fachbericht 252: Speech Communication, 24. – 26. September 2014 in Erlangen

ISBN 978-3-8007-3640-9 2 © VDE VERLAG GMBH Berlin Offenbach

Figure 2.16: Simpli�ed and generalized representation of user interaction with services
in the Smart Home from [12]

In a smart space the user no longer only a�ects the input devices, but also the en-
vironment as services can perceive it through environmental sensors (temperature,
brightness). There are user sensors which might provide pulse, location etc. The reac-
tion from service to user no longer only happens thought devices, but through changes
to the environment via actuators (heating or light switches on).

This thesis uses the term “user interface” only for the in-/output devices and not for
any sensors6 or actuators. In the words of [11]: “The interaction with a user interface
would be described as explicit interaction, whereas data from sensors and actuators are
classi�ed as implicit interaction.”

Having de�ned the term user interface for the context of this work, I now discuss the
design and development process of user interfaces.

When searching for UI papers, I recommend to use “smart home usability” as search
terms and not “smart home user interface”. Besides usability engineering there is also
the term user experience design (UX):

“ISO 9241-11 de�nes usability as ‘the extent to which a product can be used
by speci�ed users to achieve speci�ed goals with e�ectiveness, e�ciency
and satisfaction in a speci�ed context of use’.” [12]

“In order to complement this traditional view on usability with non-functional
aspects, the concept of User Experience (UX) has been brought up. ISO

6excluding input devices like wall switches which some vendors (3.2) also categorize as sensors.

42 Chapter 2. Analysis

9241-210 takes a comprehensive view and de�nes user experience as ‘a
person’s perceptions and responses that result from the use or anticipated
use of a product, system or service’. Although this view might be very
broad, it shows that classical perspectives might be too limited in covering
all aspects which are considered to be decisive for a user to successfully
use a service o�ered in a smart home context. ” [12]

To summarize: The packaging in which the product is delivered plays a role in UX, but
not in usability engineering. This work tries to optimize usability and does not deal
with UX.

Seite 14

Abbildung 2: Schema des Usability Engineering Lifecyle nach Nielsen, 1993

 Figure 2.17: Usability engineering lifecycle from [11] based on Nielsen 1993

Section 1.5 of the VDE guideline “Messung und Bewertung der Usability in Smart Home-
Umgebungen” [11] describes the user interface development process as follows:

“To ensure optimal usability, precautions must be taken even before the
system design. Thus, the characteristics and capabilities of users, require-
ments regarding the tasks performed with the UI and typical processes
executing these, and the usage context have to be analysed. First designs
for the interface should consider these �ndings. Based on the results of
the task analysis usability metrics and target values for these metrics are
determined. [. . .]

After the completion of the task analysis, the system design follows. The sys-
tem design is crucial, because here the foundations for a good man-machine
interaction are placed. One or more design proposals are implemented in
prototypes that can be evaluated with respect to the usability. For this there
are two possibilities: On the one hand di�erent methods of expert-based
evaluation, on the other hand tests with users. Both methods are typically
used in parallel or alternated by turn. They provide leads for usability
problems and opportunities for improvement. In particular, before imple-
mentation of the designs as software, these practices are very inexpensive

2.5. Front-end 43

to use, since changes, required to resolve found usability problems, are not
changes to an existing implementation.

Further development of the prototype is usually done in several cycles of
re-design and evaluation [see Figure 2.17], since changes can uncover or
create new problems.

Once the targets for usability metrics are achieved, the new user interface
can be tested or used in the �eld. User feedback allows to further optimize
and provide ideas for future generations of this and other services.”

To some degree, this document is one run of this cycle – the labels of Figure 2.17 map
to following chapters and sections:

• Analysis to chapter 2 and 3,
• Design to chapter 4,
• Prototyping to subsubsection 4.3.4.1 (Paper prototype) and chapter 5,
• Empirical Testing to section 6.2, and
• Feedback from Field to section 6.3.

A future thesis builds on my work (cf. section 7.2) and the cycle begins anew.

2.5.2 Floor plans as smart space UI

Due to the project’s de�nition, the visually largest part of the front-end is an interactive
�oor plan. Therefore I look into di�erent existing solutions. My investigation subjects
are: Classic architecture �oor plans; three web map services presenting indoor data:
Google Maps, OpenLevelUp, and Munimap; and three �oor plan views actually designed
for smart spaces: Two di�erent map views from the free@home system (3.2) and a
mockup from Apple. The remainder of this section structured as follows:

The �rst part is about the graphical �oor plan representation itself: Does the map
present a suitable amount of details, and are these details zoom depended? I investigate
how room types like corridors, toilets, and others are distinguishable, e.g. by colour. I
further explore the underlying data model: Are rooms an own semantic entity? Are
doors, windows and furniture depicted? Is the presentation’s view angle a classic top
view or were the creators more creative?
In the part ‘indoor map UIE’, I analyse if the subject is zoomable and has support for
multi-storey buildings. I study the UI elements (UIE) used to change �oors (dropdown,
buttons, etc.) and their screen position (�xed to screen or relative to building). I further
look at the points of interests (POI) marker behaviour: When are which icons shown
and how do they interact?
The third part is similar to the previous one, but this time I set the focus on Smart Space
UIE. I connect to the POI markers from the previous part and examine whether this
marker re�ects device state as well as which user interactions are speci�cally supported.

Each part has it’s own comparison table, c.f. Tables 2.4, 2.5, and 2.6.

Finally, I conclude with a summary for each subject and derive concrete requirements.

44 Chapter 2. Analysis

2.5.2.1 Graphical �oor plan presentation

Architecture �oor plans, as shown in Figure 2.18, are originally drawn for construc-
tion of buildings. Therefore they reveal too many details for raw usage in Smart Space
UI (––). The representation is independent of the scale to which the plan is printed.
Typically used are coloured lines (c.f. plotters) and not coloured surfaces. Rooms can
be inferred indirectly via the surrounding walls and the descriptive text in the mid-
dle. Doors can be recognized by quarter circles describing the door opening direction.
Windows are plotted but di�cult to recognize. Furniture is shown in some areas.

To my current knowledge, Architecture �le formats explicitly modelling rooms as
semantic entity are not very common in Germany, yet. Although new buildings are
increasingly planned in programs that are capable of exporting IFC data (Industry
Foundation Classes, standardized by buildingSMART Interational), older buildings are
not so often digitally remodelled during modernization processes. But at least in 2020,
Building Information Modelling (BIM) and therefore IFC becomes mandatory for some
public building projects [13] [14]. Till then, the pragmatic option to gather semantic
building data (like rooms as own semantic entity) is redrawing and manual assignment
of meta data like room numbers.

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

D E C K E N K A N T E U H D

H
O

03.12.036

03.12.03

03.12.037/1

03.12.038/1
03.12.040/1

03
.1

2 .
0 5

1 /
3

03.12.051/1
03.12.053/1

03.12.054/1

03.12.039/1

03.12.057/1

03.12.056/1
03.12.058/1

03.12.061/1
03.12.059/1

03.12.060/1

03.12.102/1

03
.1

2 .
0 5

1 /
2

M RD

H VT G
H VT G

H VT G

H VT G

H VT G
H VT G

H VT G
H VT G

H VT G

H
G

H
G

H VT G

H VT G H VT G

H VTS G

H VT

H VT G

P I
N
N
W
AN

D
 2

, 0
x 1

, 4
0

S K

S K

P K

TA
FE

L
2,

0 x
1 ,

20

W
H
IT

E B
O A

R
D

2 ,
0 x

1 ,
20

W
H
IT

E B
O A

R
D

2 ,
0 x

1 ,
20

TA
FE

L
 2

, 0
x1

,2
0

W
H
IT

E B
O A

R
D

2 ,
0 x

1 ,
20

W
H
IT

E B
O A

R
D

2 ,
0 x

1 ,
20

TA
FE

L
 2

, 0
x1

,2
0

TA
FE

L
 2

, 0
x1

,2
0

TA
FE

L
 2

, 0
x1

,2
0

TA
FE

L
 2

, 0
x1

,2
0

TA
FE

L
 2

, 0
x1

,2
0

TA
FE

L
 2

, 0
x1

,2
0

0 3
.1

2 .
0 5

0 /
1

M
 R

D

M ITT E F LU R

..

..

..

..

..

..
..

..

..
..

..

..

..

..

..
RW>45dB

..

..

..

..

B18-11

B18-11

B18-21

B18-20

B18-40

B18-40

B18-21

B18-21

B18-11

B27-41

B27-10

B18-12

B18-11

B18-11

B18-11

VF02

2121
2119

2120

2118
2116

2117

2686

2115

2114

2685
2111

2112
2113

2110

210

26
86

26
85

TREPPE
1021203

16.88 m2
VF

010105

BUERO WISS.
0601203

17.58 m2

MA5 5.5
HNF

010111

BUERO PROF C2/3
0361203

17.58 m2

MA11 4.2
HNF

010105

BUERO WIHI
0581203

17.58 m2

MA5 10.1
HNF

010105

BUERO DIPL.
0561203

17.58 m2

MA5 9.1
HNF

010105

BUERO WISS.
1203

17.58 m2

MA5 5.3
HNF

040 010105

BUERO WISS.
0381203

MA11 5.1
HNF

17.58 m2

010105

BUERO DOKT.
0541203

17.58 m2

MA5 8.1
HNF

010105

BUERO WISS.
0591203

17.58 m2

MA5 5.1
HNF

010105

BUERO DRITT.
0571203

26.67 m2

MA5 6.1A
HNF

010105

BUERO PROF.C4
0531203

26.68 m2

MA5 2.1
HNF

010105

BUERO SEKR.
0511203

17.58 m2

MA5 3.1
HNF

010105

BUERO WISS.
0371203

17.58 m2

MA5 5.2
HNF

010111

BUERO PROF C
0351203

17.58 m2

MA11 4.1
HNF

010105

BUERO PROF C2/3
0391203

17.58 m2

MA5 4.1
HNF

FLUR
05012.03

40.16 m2
VF

FLUR
03012.03

47.91 m2
VF

010105

BUERO WISS.
0611203

17.40 m2

MA5 5.4
HNF

AUFENTHALT
0521203

18.03 m2
VF

BT-12

27 von 35

4604

17001
17000

8
�
Fiberoptik

Brüstungskanal

17003
17002

8
�
Fiberoptik

Brüstungskanal

17005
17004

8
�
Fiberoptik

Brüstungskanal

17009
17008

8
�
Fiberoptik

Brüstungskanal8
8

17006
17007

17012
17011
17010

�
8

�
Fiberoptik

Brüstungskanal

17014
17013

8
�
Fiberoptik

Brüstungskanal

17016
17015

8
�
Fiberoptik

Brüstungskanal

17018
17017

8
�
Fiberoptik

Brüstungskanal

17039
17038

8
�
Fiberoptik

Brüstungskanal
17037
17036

8
�
Fiberoptik

Brüstungskanal17035
17034

8
�
Fiberoptik

Brüstungskanal

17033
17032

8
�
Fiberoptik

Brüstungskanal
17031
17030

8
�
Fiberoptik

Brüstungskanal17029
17028

8
�
Fiberoptik

Brüstungskanal

17027
17026

8
�
Fiberoptik

Brüstungskanal

D-MQ AK

Figure 2.18: Architecture �oor plan from http://wwwrbgalt.in.tum.de/Garching/data/

pdf/plaene/3OG-gesammt.pdf

The Google Maps web view uses as suitable degree of details (+) to present indoor data.
They use di�erent colours for corridors, toilets, stairs and the other rooms. Rooms are
(supposedly) explicitly modelled. At my test building no doors, windows, or furniture
are visible, compare Figure 2.19.

OpenLevelUp has the suitable degree of details (+), too – compare Figure 2.20. The
corridor is highlighted by a di�erent colour, but the colour selection on Google Maps is
more appealing. Rooms are modelled as the same. Doors are displayed on higher zoom
levels as icons. In my test building, windows and furniture are not modelled.

http://wwwrbgalt.in.tum.de/Garching/data/pdf/plaene/3OG-gesammt.pdf
http://wwwrbgalt.in.tum.de/Garching/data/pdf/plaene/3OG-gesammt.pdf

2.5. Front-end 45

Figure 2.19: Screenshot from Goole Maps with indoor �oor plan https://goo.gl/maps/

FgR4LexKAzp

Figure 2.20: Screenshoot from OpenLevelUp indoor view using OpenStreetMap data
[from http://wiki.osm.org/File:OpenLevelUp_shopping_mall.png] http://openlevelup.

net/?lat=48.136858&lon=-1.695054&z=18&lvl=0

https://goo.gl/maps/FgR4LexKAzp
https://goo.gl/maps/FgR4LexKAzp
http://wiki.osm.org/File:OpenLevelUp_shopping_mall.png
http://openlevelup.net/?lat=48.136858&lon=-1.695054&z=18&lvl=0
http://openlevelup.net/?lat=48.136858&lon=-1.695054&z=18&lvl=0

46 Chapter 2. Analysis

The “Munimap” project of Masaryk University is a solution in between: It is based on
2D geometries from architectural plans, broken down into doors, windows, rooms and
�oors [15]. The optical distinction between various room types is given, but in compar-
ison to the continuous areas from Google Maps or OpenLevelUp they look cluttered.
The used patterns are di�cult to di�erentiate, compare Figure 2.21. Again, I have no
access to the concrete data, but the statements in [15, 0:02:11] suggest that rooms are
explicitly modelled as own entity – “Every indoor feature is polygon [. . .], georefer-
enced and related to one �oor”. They represent the “walkable surface”. The doors at
the test building (MU Rectorat) are partially marked by dark grey boxes. Windows can
be recognized indirectly through indentations in the walls, the windows themselves are
not plotted.

Figure 2.21: Screenshot from interactive mini map example at http://maps.muni.cz/

munimap/latest/example/helloworld.html showing building related �oor selector [15]

free@home has two di�erent views for the building plan <R.12>: On the one hand the
con�guration mode (Figure 2.22), on the other the operation mode (Figures 2.23, 2.25).
The developers have taken the right degree of detail (++). In the con�guration �oor
plan, the detail view is not zoom dependent. It is not abstracted, i.e. the system always
tries to represent the same amount of data. Although the symbols become smaller, I
still recognize whether it is a lamp, switch or blind. Within the operation �oor plan, the
icons become smaller and I can no longer recognize what type a device is. All rooms
have the same colour. The user must derive from the name of the room whether its a
corridor or toilet.

When setting up the system, the owner draws a rectangle7 per room, representing the
walkable surface. The gaps between the rectangles implicitly form the walls. There is
no possibility to model doors, windows and furniture.

7simpli�cation, see section 3.2 for details

http://maps.muni.cz/munimap/latest/example/helloworld.html
http://maps.muni.cz/munimap/latest/example/helloworld.html

2.5. Front-end 47

Figure 2.22: Screenshot free@home SysAP 2.0.4 con�guration mode: allocation

Figure 2.23: Screenshot free@home SysAP 2.0.4 operation mode: Floor plan in low zoom
level

48 Chapter 2. Analysis

The last graphical representation (Figure 2.26) is a screenshot from Apple’s WWDC
2014 Keynote, during introducing Homekit: Although it is not a real product, this
mockup provides interesting ideas: The level of detail is very good (++). Apple’s
designers did not use di�erent colours for corridor, toilet, or similar – instead they
placed furniture: Although the individual areas are not labelled with text, I can clearly
recognize living room, dining table, kitchen and bedroom. In this comparison, it is the
only representation which is not realised as top view, but in a perspective view – the
plan is depicted as a 2D plane in 3D space.

Graphical floor plan representation

Graphical floor plan
representation

Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

suitable amount of
details

no – – yes + yes + yes 0 yes ++ yes ++

details zoom
depended

no yes yes yes no yes no

different colours for
corridors, toilets

no – corridor ++
distinguish
through colour

corridor ++
distinguish
through colour

corridors 0
dotted

no – no –

rooms are
semantic entity

don’t exist –
semantically
(if not IFC based)

yes + yes + yes, +
walkable area

yes, +
walkable area

possibly yes 0

doors yes, with opening
direction 0

no
– –

yes, as icons
0

yes, as dark grey
boxes +

no
– –

yes, gaps in wall
++

windows yes
 0

no no wall indentions
0

no grey gaps in wall
++

furniture to some amount
(yes) 0

no no no no yes, as grey
areas ++

view angle top view top view top view top view top view perspective view

Smart Space UIE

Smart Space UIE Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

device icons
represent state n/a n/a n/a n/a no yes yes

direct action with one
click n/a n/a n/a n/a no yes n/a

Indoor Map UIE

Indoor Map UIE Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

zoomable n/a yes yes yes yes n/a

multiple floors n/a yes yes yes yes rather not

floor selector
n/a

listing on
bottom right
corner

top left, dropdown
with arrows

floating, per
building

own view + shortcut

—near zoom controls n/a yes + no – no – 50% 0

—per building n/a no 0 no 0 yes 0 no 0

icon size zoom
dependent

n/a no, fixed no, fixed no, fixed yes, icons get
sized down

yes, UIE
becomes
small dot

n/a

�1

Table 2.4: Comparison of graphical presentation aspects of �oor plans

2.5.2.2 Indoor Map UIE

After having discussed the graphic aspects of building plans, let us now look at the
individual solutions in regard of indoor map user interface elements (UIE) – see Table 2.5
for summary.

The architecture plan has no UIE because paper is not interactive.

The web maps (Google Maps, OpenLevelUp and Munimap) are zoomable via gestures,
mouse wheel, or buttons. They all support multi-storey buildings. To represent interest-
ing places (POI short for ‘points of interest’) they use icons in �xed size relative to the
screen resolution. Typically not all POIs are shown at once, they start to appear piece
for piece depending on the current zoom level.

In the Google Maps web view (Figure 2.19), the �oor selector is at the bottom right –
near the zoom controls, aside are buttons for ‘show current position’, ‘display images’
and ‘switch to Street View’. The �oor selector, a vertical set of buttons for the individual
�oors, is �xed at the edge of the screen and always refers to the complete view. When
the building plan is enlarged, the icons for staircases, toilets etc. have a higher priority
and appear earlier.

At OpenLevelUp (Figure 2.20) the �oor level selector is placed on the opposing side of
the other controls. The developer used a drop-down box with up/down arrows. The

2.5. Front-end 49

drop-down box lists all level values referenced in the current view area. At the example
building, there are icons for each amenity (like shops, restaurants and banks); icons for
toilets, stairs, elevators; or – at higher zoom levels – icons for doors. When zooming
out, the POIs get combined into clusters <R.6>.

For Munimap (Figure 2.21), the �oor selector is attached to the selected building and
not to the edge of the screen – When the user moves the building/map the �oor selector
popup follows her movements. Despite this di�erent concept, the selector itself is a
simple drop-down �eld. In the low zoom levels there are only icons for building entrance
and an info point. The next zoom level adds stairs and elevators, the next one toilets.

ABB-free@home® 04 Commissioning

System Manual │23

Fig. 16 Creating the house structure - View of all floors

Fig. 17 Creating the house structure - View of one floor

Figure 2.24: free@home SysAP 1.3 con�guration mode: �oor selection via side view
from [16]

The building plans in free@home are zoomable and designed for a single multi-storey
building. The �oor selector is implemented as a side view. As shown in Figure 2.24:
There is one cellar, multiple intermediate stories like ground �oor or upper �oor, and
one top �oor nicely symbolized with a roof.

By clicking on the arrow behind the �oor name, I get to the actual �oor view, see
Figures 2.22 and 2.23. This view has a second �oor selector: A dedicated bar at the top
of the map, consisting of a house symbol, an arrow pointing to the left, the �oor name,
and an arrow pointing to the right. I can use the arrows to go one �oor up or down,
with a click on the house or the �oor name I can return to the overall side view.

Since this second �oor selector spans over the entire map width (c.f. Figure 2.25), the
important parts are not close to the zoom control. The �oor selector is �xed to the
screen and not to the building. For free@home this is actually not an issue: There is
only a single building, and not multiple ones with di�erent �oor numbering systems,
like web maps have to cope with. There is no built-in icon clustering - multiple devices
in the same XY location have to be misplaced: The location at free@home is not always
the exact installation location of the device, but an approximate hint. This also applies

50 Chapter 2. Analysis

Figure 2.25: Screenshot free@home SysAP 2.0.4 operation mode: Floor plan in high
zoom level

Figure 2.26: Screenshot from Apple WWDC Keynote 2014, announcing HomeKit from
[17]

2.5. Front-end 51

to the example con�guration �oor plan in Figure 2.22: The three switches in the room
“Wohnen” near the door to “Flur” (corridor) mounted on the wall below each other. A
similar problem exists with the outdoor lamps at the left edge of the building plan.

In contrast to all other solutions examined, at the free@home con�guration view the
icon size is dependent on the zoom level: When I enlarge the plan, the icons become
larger. However, in the operation view the devices are only a small point, cf. Figure 2.23.
When a section is enlarged, the view switches to a individual UI control element e.g. to
turn on a lamp, as shown in Figure 2.25.

Graphical floor plan representation

Graphical floor plan
representation

Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

suitable amount of
details

no – – yes + yes + yes 0 yes ++ yes ++

details zoom
depended

no yes yes yes no yes no

different colours for
corridors, toilets

no – corridor ++
distinguish
through colour

corridor ++
distinguish
through colour

corridors 0
dotted

no – no –

rooms are
semantic entity

don’t exist –
semantically
(if not IFC based)

yes + yes + yes, +
walkable area

yes, +
walkable area

possibly yes 0

doors yes, with opening
direction 0

no
– –

yes, as icons
0

yes, as dark grey
boxes +

no
– –

yes, gaps in wall
++

windows yes
 0

no no wall indentions
0

no grey gaps in wall
++

furniture to some amount
(yes) 0

no no no no yes, as grey
areas ++

view angle top view top view top view top view top view perspective view

Smart Space UIE

Smart Space UIE Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

device icons
represent state n/a n/a n/a n/a no yes yes

direct action with one
click n/a n/a n/a n/a no yes n/a

Indoor Map UIE

Indoor Map UIE Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

zoomable n/a yes yes yes yes n/a

multiple floors n/a yes yes yes yes rather not

floor selector
n/a

listing on
bottom right
corner

top left, dropdown
with arrows

floating, per
building

own view + shortcut

—near zoom controls n/a yes + no – no – 50% 0

—per building n/a no 0 no 0 yes 0 no 0

icon size zoom
dependent

n/a no, fixed no, fixed no, fixed yes, icons get
sized down

yes, UIE
becomes
small dot

n/a

�1

Table 2.5: Comparison of indoor map UI elements

2.5.2.3 Smart Space UIE

This �nal iteration is about Smart Space speci�c user interface elements, c.f. Table 2.6.

As explained in the previous sub-subsections, the free@home developers divided
con�guration and operation into two separate web apps and �oor plans. When the
user enlarges the �oor plan, the small dots indicating actuators become large (half)
round icons acting as UIE, compare Figure 2.25. In the case of a simple lamp, a click
on this icon leads to a state change from o� to on or vice versa. This state is re�ected
by the icon itself: When lamps are switched on, the icons is bright with white glow.
For dimmable lamps the icon brightness depends on the current state, also displayed as
percentage. It can be increased or decreased by horizontal dragging of the symbol. The
same is true for blinds, where the percentage and icon describes the opening degree.
For heating actors, the temperature is expressed in centigrades.

In the operation view, the user can hide device groups - categorized by heating, light, and
blinds. To display only a speci�c category, she has to hide all other categories manually.
The con�guration �oor plan does not display any devices state, but the device type
independent of the zoom level.

The Apple Mockup (Figure 2.26) represents state by icon colour. During the presenta-
tion [17] the grey lamp icon is animated to yellow, the thermostat to blue, and the door
lock to green.

52 Chapter 2. Analysis

Graphical floor plan representation

Graphical floor plan
representation

Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

suitable amount of
details

no – – yes + yes + yes 0 yes ++ yes ++

details zoom
depended

no yes yes yes no yes no

different colours for
corridors, toilets

no – corridor ++
distinguish
through colour

corridor ++
distinguish
through colour

corridors 0
dotted

no – no –

rooms are
semantic entity

don’t exist –
semantically
(if not IFC based)

yes + yes + yes, +
walkable area

yes, +
walkable area

possibly yes 0

doors yes, with opening
direction 0

no
– –

yes, as icons
0

yes, as dark grey
boxes +

no
– –

yes, gaps in wall
++

windows yes
 0

no no wall indentions
0

no grey gaps in wall
++

furniture to some amount
(yes) 0

no no no no yes, as grey
areas ++

view angle top view top view top view top view top view perspective view

Smart Space UIE

Smart Space UIE Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

device icons
represent state n/a n/a n/a n/a no yes yes

direct action with one
click n/a n/a n/a n/a no yes n/a

Indoor Map UIE

Indoor Map UIE Architecture
floor plan

Google Maps OpenLevelUp Munimap free@home
configuration usage

Apple Mockup

zoomable n/a yes yes yes yes n/a

multiple floors n/a yes yes yes yes rather not

floor selector
n/a

listing on
bottom right
corner

top left, dropdown
with arrows

floating, per
building

own view + shortcut

—near zoom controls n/a yes + no – no – 50% 0

—per building n/a no 0 no 0 yes 0 no 0

icon size zoom
dependent

n/a no, fixed no, fixed no, fixed yes, icons get
sized down

yes, UIE
becomes
small dot

n/a

�1

Table 2.6: Comparison of Smart Space speci�c UI elements

2.5.2.4 Conclusion (Floor plans as smart space UI)

First a few concluding sentences per investigation subject:

The architecture �oor plans typical presentation is not suitable for a smart space control
app. Google Maps’ presentation provides a better overview, has the most pragmatic �oor
selector and implements zoom dependent details. From the technical side, OpenLevelUp
and Munimap show how rendering indoor maps via vector data is best implemented.
Munimap introduces the concept of attaching the �oor selector to a building instead
of the map view. The free@home system shows that separation of a smart space app
into con�guration and usage should be considered: In the con�guration view the icons
resize, while still presenting the same information. The free@home usage view has very
good Smart Space UI elements. However, there is only one value per device that can
be changed. The graphical representation from the Apple Mockup is nice, but probably
does not work for all to-be smart spaces, also Apple itself has decided to not use a
building plan in their iOS 10 Home App.

To derive concrete requirements, let me reiterate the individual features:

In my point of view, the suitable amount of details for smart space UI �oor plans are thick
lines symbolizing walls with gaps at the door passages, grey areas symbolizing furniture,
and optional grey lines for windows in exterior walls. Door opening directions, socket-
outlets and other labels are irrelevant and only cause confusion. Optionally suggest
�xed furniture such as tables. The web maps show that colours are useful to highlight
high frequented areas like corridors, staircases, elevators, or toilets.

A North-oriented �oor plan is suitable for Admins, where Occupants cope better with a
rectangular representation (The roles Admin and Occupant are de�ned in section 2.3).

From web maps, users are used to enlarge the map via mouse wheel, gestures or plus/mi-
nus buttons <R.3>.

Switching between the �oors <R.4> is best implemented by listing the individual �oors
near the zoom buttons (cf. Google Maps).

The device marker might display the current state via di�erent colours or icons as
shown by free@home. Multiple devices at the same XY coordinates <R.5> and �exible
zoom levels, require self adjusting device representations, for example markers might
shrink in size or merge <R.6>.

2.5. Front-end 53

2.5.3 Mobile apps in smart spaces

The task de�nition dictates that I should create a web app for tablets and PCs. This
sections analyses the origin of apps, tablets, and their operation systems. The section
borders the term ‘web app’ from ‘native app’, and investigates how to distribute apps
for multiple platforms.

The 1991 article “The Computer for the 21st Century” [18], Mark Weiser came to the
conclusion that Ubiquitous Computing requires devices in di�erent sizes:

1. Tabs: inch-scale machines (2 inch ≈ 5 cm) that approximate active Post-It notes
2. Pads: foot-scale devices (1 foot ≈ 30 cm) that behave something like a sheet of

paper, book or magazine
3. Boards: yard-scale displays (1 yard ≈ 1 m) that are the equivalent of a blackboard

or bulletin board

Pads became mainstream in 2010 when Apple introduced its �rst iPad. It was the most
successful tablet at the time of its release [19]. Others followed, especially Samsung’s
Galaxy Tab, which – in view of Weiser’s de�nition – actually is not a Tab but a Pad.

The iPad runs Apple iOS, the Galaxy Tab runs Google Android. Both operating systems
(OS) were initially developed for smart phones and later extended to support tablet
devices. Third party applications for these devices can be separated into three groups:

Native apps are written in an OS speci�c programming language. For Apple iOS the
o�cial supported programming languages are Objective C and Swift. Google’s Android
is more open, but in general all UI speci�c code is written in Java. Both provide UI
libraries, which provide ready to use layouts, input controls, settings, dialogues and
navigation elements. A native app’s source code is compiled by it’s developer and
shipped in binary form to the end user. This distribution is typically done via software
repositories, the so called “app stores”. In case of iOS it requires a review by Apple
for each version of the app to be listed in their repository. For companies exists the
possibility to distribute in-house apps via a local server, but the broad way for the mass
leads through Apple’s centralized repository. For Android exist multiple stores: Most
common are the Google Play Store and F-Droid.

Web apps are build in totally di�erent way. Interactive client software in the web is
typically implemented in or transpiled to JavaScript (2.5.6.1) and executed by a web
browser’s scripting engine. Browsers allow web apps to hide the browser UI chrome,
so a naive user might not be aware he is actually using one. In contrast to classic native
apps, it is not necessary to create a new code base for every platform. Android and iOS
both provide a way to add web apps to a device’s home screen. Web apps can not make
use of native UI libraries. Therefore several JavaScript libraries exist to reimplement
native UI elements speci�ed by the UI guidelines (2.5.4) of the corresponding platform.

In some cases a OS feature is not yet accessible for web apps, as APIs are not de�ned,
available or consistent over di�erent OS releases, e.g. background noti�cations on iOS.
To overcome this limitation a developer can bundle their web app as hybrid app. This is
typically done using Apache Cordova (a part of a project formerly known as PhoneGap).

54 Chapter 2. Analysis

Cordova is a build environment which includes a local web server and a minimal native
app consisting of a single web view. This minimal app is extensible with additional
plugins providing bridges between JavaScript and native libraries. These plugins can
include even a full browser, as some manufactures of Android devices are known for
not providing OS software updates for their products and the OS web rendering engine
used by the web view would be probably outdated.

Reasons to distribute a web app as hybrid app are:

• ensure an up-to-date browser (Android)
• be listed and found in the app stores by the general user
• app requires huge8 amount of data and should run o�ine
• display noti�cations from server process while app is closed/in background (iOS)
• add widget to home screen or today view

Besides classic hybrid apps, where web apps are encapsulated, there are also other
approaches. There exist ‘specialized browsers’ having an own markup language, with
own implementations per target platform. Apart from React Native these are (mostly)
always commercial and not free software. Facebook’s React (see section 2.5.6.2) allows
to share code between a web, iOS and Android version.

2.5.4 Human interface guidelines

The previous three subsections introduced and de�ned UI engineering, Usability, Smart
Space UI, mobile apps and their ecosystem. Now I investigate if there are rules one can
follow to build a web app with good UI and usability.

“From the earliest days of computing, interface designers have written
down guidelines to record their insights and to try to guide the e�orts of
future designers. The early Apple and Microsoft guidelines [for desktop
computers] have been followed by dozens of guideline documents for the
Web and mobile devices.” [20, p. 75]

Human interface guidelines (HIG) should not be confused with style guides. Besides
pure graphics, they de�ne behaviour, gestures and provide reasoning for their author’s
decisions. HIGs enable di�erent developers to produce matching components acting
in an uniform way. For example, HIGs de�ne that the input box of for each option in
a group, where the user has only a single choice are round (radio buttons); whereas
in multiple choice groups, the boxes are quadratic (check boxes) . For a list of current
guideline documents see http://designguidelines.com.

The relevant HIG documents for this work are the iOS Human interface guidelines [21]
and the Android Material Design speci�cation [22]. I could not �nd guideline documents
for platform independent web apps. Each document is related to one particular OS or
platform. I found conclusions for multiple platforms only in the form of articles like [23],

8The exact persistent storage limit depends on the used API, the browser and other things. See
http://www.html5rocks.com/en/tutorials/offline/quota-research/ for more details.

http://designguidelines.com
http://www.html5rocks.com/en/tutorials/offline/quota-research/

2.5. Front-end 55

Figure 2.27: Comparison of Android (left) and iOS (right) global elements from [23]

Figure 2.28: Comparison of Android (left) and iOS (right) input elements from [23]

where O’Sullivan compares OS mannerism and UI concepts: In iOS it is essential to
provide a back software button in the top bar, whereas it is at the bottom of the screen
for Android (compare Figure 2.27). For iOS this button should be labelled with the title
of the previous view. On Android the button is not the app developers responsibility:
On current devices the OS takes care of displaying a back button, previous Android
hardware was even equipped an explicit hardware button. O’Sullivan recommends
to give control and input elements a native feel: “As with alerts and dialogues, these
controls and inputs are an area of trust and familiarity for the user. Use the native
components as much as possible for these, so that people know how to use them [. . .]”
(compare Figure 2.28). [23]

A web app developer has to decide if the app should look like a native app, or a totally
di�erent user experience should be used. Both choices have advantages and disadvan-
tages: Particularly when HIGs are contradicting each other, an app might look totally
di�erent on one device then on another. With same UI on tablet and PC, users can help
each other more easily and might get better along when switching devices (compare
2.5.5.2). Even small behaviour di�erences in animation and gestures stand out, when
rebuilt UI elements in web apps look alike their native implementations too much. This
e�ect is sometimes called the “uncanny valley”. For example, I came across of switch
implementations, reacting only to clicks/touches and not to swipes like their native
counterpart.

In context of the DS2OS project, I would recommend to create an own set of guidelines, to
which the UI extensions (see section 2.2.4) should conform to. For example: Components
should behave similarly, whether the user controls a lamp or a heater. Users should
recognize at �rst glance where they can perform actions or only state is displayed. Input
elements must only be used, if the user actually has the rights to modify the value. For

56 Chapter 2. Analysis

a regular lamp, there must not be a disabled switch, but a text label with ‘on’ or ‘o�’,
or a corresponding image. A device icon colour represents the device’s category, e.g.
yellow for light, blue for HVAC and green for security. Icons of powered o� devices are
grey. Further rules can be drawn from literature e.g. “Present digital values only when
knowledge of numerical values is necessary and useful” [20, p. 77].

To return to the initial question: In my view there is currently no cookie-cutter approach
to get web apps with good UI and usability. “Despite of scientists having tried to
derive models, principles, and theories – UI design is a complex and highly creative
process” [20, p. 107]. “Creative processes are notoriously di�cult to study, but well-
documented examples of success stories will inform and inspire.” [20, p. 143]

2.5.5 Self-adapting UI

The previous subsections introduced and de�ned UI engineering, Usability, Smart Space
UI, mobile apps and their ecosystem. Now I investigate how to build self-adapting UI.

In an ideal world with in�nite UI designers and money, every smart space would have
an own app optimized for this space and its users, which was developed as described
in the previous subsections. But in today’s reality this does not scale: There are not
enough well educated UI designers and it would not be economically viable, as their
wage is comparatively high. Thus to o�er smart spaces with good UI to many people,
a di�erent, more scalable approach is needed. In the DS2OS project, we named this
approach self-adapting UI.

The key results of this subsection are: Only programmatic UI can be self-adapting. The
initial UI design must already be good, developers can not pass on their task to users.
Customization is only easy when the user has previously designed options to choose
from (which we named extensions). The following subsections state reasons for these
results and provide further details.

2.5.5.1 Static UI versus Programmatic UI

The vertical labels at the left border of Figure 2.29 categorize the UIs introduced in
section 2.1 and chapter 3 into static and programmatic UI.

Static UI can only be modi�ed by replacing it with another UI or with some amount of
manual work. For some, only (external) experts can change the con�guration – e.g. a
wall switch wired to the ceiling lamp by an electrician, or the touch panel introduced in
2.1.5.4. Others have a �xed layout of the buttons, but their con�guration can be changed
by it’s users, compare the remote controls and wall push buttons from subsection 2.1.2.

Programmatic UI, on the other hand, can use nested loops (while, for) and branches (if)
to generate as may buttons as needed. Basically all products from chapter 3 fall into
this category, including the UI prototype resulting from this work.

2.5. Front-end 57

openHAB
config

based UIs
(2.1.4, 3.1)

St
at

ic
 U

I
Pr

og
ra

m
at

ic
 U

I
with (user-usable) customization

free@home (3.2)

HomeKit (3.3)

Web UI 2 (2.2.4, 5)

openHAB Paper UI (3.1)

Crestron DigitalMedia (2.1.5)

wall switch

FS 20 (2.1.2)

with UI extensions
by third party

Figure 2.29: Categorization of UIs from section 2.1 and chapter 3

2.5.5.2 Customization by user

The �st subdivision of Figure 2.29 (in dark blue) contains only UI having (user-usable)
customization features.

When adding customization features, former research [24, p. 12] observed:

• Users do not dare to use the customization features, because they are afraid to
break something.

• The initial design has already to be good – one can not leave it to the users
themselves

• Customization is easy only, when a pool of building blocks to choose from exist.

In the static UI section, only the remotes from subsection 2.1.2 are customizable, as
users can reassign the buttons to other devices themselves.

The openHAB project provides multiple UIs: The Paper UI only lists the available
devices and is not customizable by the user. To satisfy the users’ customization needs,
the project created the ‘Basic UI’ with the same web application framework as the
Paper UI. The Basic UI, the older UIs (see subsection 2.1.4), and the native apps build
there UI based on con�guration �les (aka ‘sitemap’). There these UIs are part of the
customization subsection.

free@home (3.2) and HomeKit (3.3) both allows the user to move devices between rooms
via UI and create favourites. Due to the integrated �oor plan, free@home even allows
moving within a room.

For more details about the �ndings from the beginning of this sub-subsection, see
following quotes from [24, p. 12]:

58 Chapter 2. Analysis

“The ideal solution to the usability question might be to leave the design of
the interface up to individual users. Just provide su�cient customization
�exibility, and all users can have exactly the interface they like. Studies
have shown, however, that users do not customize their interfaces even
when such facilities are available [Jørgensen and Sauer 1990]. One novice
user exclaimed, ‘I did not dare touch them [the customization features]
in case something went wrong.’ Therefore, a good initial interface is
needed to support novice users. Expert users (especially programmers)
do use customization features, but there are still compelling reasons not to
rely on user customization as the main element of user interface design. ”

“First, customization is easy only if it builds on a coherent design with
good previously designed options from which to choose. Second, the
customization feature itself will need a user interface and will thus add to the
complexity of the system and to the users’ learning load. Third, too much
customization leads each user to have a wildly di�erent interface from
the interfaces used by other users. Such interface variety makes it di�cult
to get help from colleagues, even though that is the help method rated
highest by novice and expert users [Mack and Nielsen 1987]. And fourth,
users may not always make the most appropriate design decisions. ”

The UI has to be good enough the �rst time a new user comes in contact with it,
particularly in installations with multiple users. A new occupant should not have to
gather information from colleagues for some days to get an usable interface.

For commercial buildings I could even go a step further and make the following case:
When the users have the opportunity to customize the UI for themselves, it’s bad for the
overall system: The power users no longer use the default UI and therefore no longer
know how bad it is. There is no more pressure on the operator/developer to improve the
default con�guration. When you give the power users the possibility to customize, how
are you ensuring that the new solutions are �owing back into the community? How to
notify power users about a new default con�guration, which is potentially better than
their own – without annoying them?

2.5.5.3 Extensions by third party from catalogue/store

The last subdivision Figure 2.29 contains only extensible UI. As far as known to the
author all existing smart space UI lacks this feature – only the UI to be created as part
of this work is part of this group.

As already quoted above: “customization is easy only if it builds on a coherent design
with good previously designed options from which to choose.” [24] When we apply the
‘app economy’ part of the VSL services concept also to this ‘options catalogue’, we get
portable UI extensions distributed via a store. Nevertheless, designers and developers
need guidelines so the extensions are of good quality and consistent with each other, see
section 2.5.4. The extension store idea was already described in more detail by following
scenario from subsubsection 2.2.4.1:

2.5. Front-end 59

The user has radio controllable LED bulbs in his living room. The software
control element is build with three sliders, adjusting the red, green and blue
value of the light (compare left part of Figure 2.10). When he wants to dim
the light, all three sliders have to be adjusted, and he always needs some
time to �nd the right colour. As he is dissatis�ed with this situation, he
opens the “Extension Store”. There he �nds an extension that has only one
slider for the colour, a second slider for the intensity and a toggle switch
to turn the light o� (compare right part of Figure 2.10). He hits the install
button and the initial control element is replaced with the new one from
the extension. Now he can switch o� or dim the lights without destroying
the colour settings.

2.5.5.4 Self-adapting

openHAB
config

based UIs
(2.1.4, 3.1)

St
at

ic
 U

I
Pr

og
ra

m
at

ic
 U

I

with (user-usable) customization

free@home (3.2)

HomeKit (3.3)

Web UI 2 (2.2.4, 5)

openHAB Paper UI (3.1)

Crestron DigitalMedia (2.1.5)

wall switch

FS 20 (2.1.2)

with UI extensions
by third party

Self-adapting

statistics

UI design
robots

Figure 2.30: Categorization with self-adapting UI highlighted in red

So far the overall categorization - now to ‘self-adapting UI’. Self-adapting combined with
extensible UI was already described in more detail with the corresponding scenario in
subsubsection 2.2.4.2. It is closely related to <R.16>. When interpreting self-adapting as
’A new device comes into the system and the user can handle it inside the GUI without
having to manually change any con�guration �les’, the red highlighted classi�cation
shown in Figure 2.30 emerges.

The Paper UI from the openHAB project (3.1), features an inbox view, where new found
devices appear – after the corresponding binding was installed with in an other section
of the Paper UI. Apart from dynamic group listings, the classic, con�guration �le based
UIs are not self-adapting, and therefore mostly let out of the red area. Free@home (3.2)
has a similar concept to the inbox: In lower area of the ‘Placement’ step (Figure 3.7)
new connected devices pop up automatically. The user than moves the devices from

60 Chapter 2. Analysis

this lower bar to the actual location of the device in the �oor plan. The further process
is described in detail in section 3.2. HomeKit (3.3) also supports auto discovery of new
devices, but requires the one user with administration rights, to scan or enter the new
devices security code. After that the new devices is assigned to a room and con�gured
accordingly.

The reminder of this section is about two small areas at the bottom right of Figure 2.30
involving machine learning.

2.5.5.5 Customization/Optimization by the UI itself

UI customizations can be done by either humans, e.g. the users (2.5.5.2) or third-party
developers (2.5.5.3), but to some degree the UI might be able to optimize itself for the
users. For example – the UI can track usage and use this statistics for automatic creation
of favourites, o�er short cuts for frequently used multi step processes, or change size
of device icons in the map view based on (this user’s) usage. Storing usage statistics
in distributed applications is indeed a challenge. It might be a privacy issue when not
stored decentralized.

An other automatic optimization could be based on the on the 7±2 rule. This ‘rule’ goes
back to one of the most highly cited papers in psychology, published 1956 by George
Miller and is actually misinterpreted most times:

“The value 7±2 as a measure of short term memory is an urban legend. It
only applies to speakers of English attempting to remember a sequence of
digits. Actual human memory performance depends on many factors and
cannot be approximated by a numeric value.” [25]

It does not matter how many items there are, as long as they are grouped in 7±2 items
per group. Even more �at menu hierarchies with many items per level work better than
deep menu hierarchies. A piece of software could actually implement such a behaviour
by implementing a set of heuristics. For example: Try to group devices by di�erent
attributes like type, location etc. and count the group members. If the number of each
group is below 10 everything is �ne, otherwise try di�erent attributes or split the group
in half.

2.5.5.6 (Semi) automatic generation of new UI extensions

Suppose that the way designers and developers work can be completely formalized into
rules and models in Future: A kind of UI creation robot could be created, implementing
the process (2.5.1), guidelines and principles (both 2.5.4) as good as it can. The robot
creates new components and publishes them in a store. Users try them out and give
ratings. For bigger installations it could perform automated A-B tests with new users:
one half of the user base gets displayed version A, the other half version B. After four
weeks the system decides on usage statistics which version worked better and uses this
for all users in that role as new default. But “Despite of scientists having tried to derive

2.5. Front-end 61

models, guidelines, principles, and theories – UI design is a complex and highly creative
process” [20, p. 107]. While there are �rst attempts to teach computers creativity, yet
as of today developers and designers reach their goal faster when they use their UI
knowledge directly to build components, instead of trying to transform their knowledge
into a model computers understand. For example: A developer gets to know about
the new <input type="color"/> in HTML5, reads the speci�cation and creates a new
component for colour selection using this element.

2.5.6 Front-end building blocks

In the DS2OS project it was decided that we do not want to build an own app for each
OS and therefore use web apps.

As web apps are typically written in JavaScript dialects, I give an short introduction
into the environment and mindset of this scripting language and developers using it
in section 2.5.6.1. The �nal two sections are about libraries and frameworks providing
toolboxes and guidelines for web app development. Section 2.5.6.2 gives an overview
over the current generation web application frameworks and section 2.5.6.3 looks into
map libraries.

2.5.6.1 JavaScript

The DS2OS project manager (Marc-Oliver Pahl) decided that I should implement the
graphical user interface as web app. This means there is a client side JavaScript runtime,
allowing advanced logic and interaction. Obviously this runtime needs JavaScript
source code. Theoretically today one can automatically transform source code from
nearly every9 other language to JavaScript. But many developers consider programming
directly in JavaScript as the natural way.

JavaScript was �rst introduced within the Netscape Navigator web browser in 1995.
Other browsers adopted this idea and added similar scripting languages into their feature
set. This lead to several di�erent implementations with di�erent features – partly
incompatible. JavaScript developers nearly had the double amount of development
e�ort, and a software had to be tested in every supported browser manually, e.g. one
had to use a di�erent method to get the contents of the browser address bar in Internet
Explorer then in other browsers.

As JavaScript is a dynamic language, functions can be injected into the environment
during runtime, as show in Listing 9. In this example the function Date.now() would be
implemented in JavaScript if the browser lacks a native implementation. A developer
can now use Date.now() in her code without having to think about the actual details
where this function comes from. Today such patches to a web browser are called shims
or poly�lls10.

9 https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
10https://remysharp.com/2010/10/08/what-is-a-polyfill

https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://remysharp.com/2010/10/08/what-is-a-polyfill

62 Chapter 2. Analysis

if (!Date.now) {

Date.now = function now() {

return new Date().getTime();

};

}

Listing 9: JavaScript Shim for Date.now() [from http://stackoverflow.com/a/31721437]

Developers can use newest APIs today, while poly�lls are taking care of providing
JavaScript implementations for old browsers <R.22>. The developer only has to include
a library providing these poly�lls. Speaking of libraries: Managing libraries and their
dependencies manually is not really common any more. As in other programming
languages there are packet managers dealing with downloading and updating libraries
used in a project. For example pip in Python or CPAN in Perl. In JavaScript this tools
are called npm, bower or yarn <R.23>.

Especially since the new app should be �exible and extensible, programming in an object
oriented fashion (OOP) is reasonable. In OOP there is typically only one class de�nition
per �le. Existing classes are reused in other classes either by reference or sub-typing. In
comparison to Java or Python, JavaScript did not specify how to de�ne classes/modules
till mid-2015. As JavaScript is a dynamic language, there are multiple approaches
how to de�ne modules (see CommonJS, AMD, ES6, GCT). Therefore developers have
to choose a way of implementing OOP for each project. For people who think the
JavaScript community should agree on one standard, there is also light in the sky, at last:
ECMAScript, a scripting-language speci�cation initially based on JavaScript. As of 2014
JavaScript can be seen as an implementation of ECMAScript 5 published in 2009. In
mid-2015 the sixth edition of ECMAScript (ES6 aka ES2015) has been released, adding
native syntax for classes and modules (and other features).

But with ES6 developers have once again the problems described above: It takes time
till the new standard has been implemented by the browser manufacturers, and even
more time till all end users have updated their browsers. Should developers wait and
still write ‘old code’? Of course there is a solution: source-to-source compilers. The new
ES6 syntax is converted to equivalent JavaScript/ES5 code by an IDE. These ‘converters’
are sometimes called transpilers as they transform source code to other source code.

There is also a large group of people who want to have types in JavaScript. With
the transpiler technology there is also a solution for these people: The TypeScript
language/dialect, which is transpiled to JavaScript.

To conclude: When developers start a new JavaScript project, they have to make several
decisions: Which language version, build system, package manger, and libraries? Some
libraries already come with a set of these decisions taken, which are then typically called
framework.

http://stackoverflow.com/a/31721437

2.5. Front-end 63

2.5.6.2 Web app frameworks

In simple terms web app frameworks (WAF) are libraries implementing the model-
view-controller pattern – or one of its successors. Some WAFs provide/dictate a whole
development environment (see previous section), others force the developer to search
for the matching building blocks to come to a full app.

To simplify the decision-making process, the project TodoMVC might be helpful. Quot-
ing their website http://todomvc.com:

“Developers these days are spoiled with choice when it comes to selecting
an MV* framework for structuring and organizing their JavaScript web
apps.

Backbone, Ember, AngularJS. . . the list of new and stable solutions contin-
ues to grow, but just how do you decide on which to use in a sea of so many
options?

To help solve this problem, we created TodoMVC - a project which o�ers
the same todo application implemented using MV* concepts in most of the
popular JavaScript MV* frameworks of today.”

As of February 2016 there are 64 di�erent implementations with various frameworks.
This collection of implementations for the same problem allows direct comparison based
on the actual source code. Developers can form their own informed opinion.

For me following criteria are required: The framework should embrace HTML5, use
native GUI where possible (= ready for Web Components), and therefore does not
reimplement everything itself. To ensure long term support, there should be an active
community, which also can be measured by the number of available plugins. The
corresponding styles and templates should have support for tablets and desktop PCs
and not just for smartphones. I prefer the all-tools-included framework approach, which
for me includes a state of the art URL router and template engine, using virtual DOM
di�ng.

In the end, three frameworks made it to the short-list, which all published new major
releases during the research period of this thesis: Ember released version 2.0 in August
2015, Facebook published React 0.14 in October, and Google released the beta version of
Angular 2.0 under the name Angular.io in December. For a more detailed comparison,
refer to [26]. The author of this blog article compares these three frameworks in detail
and concludes:

“Of these frameworks, Ember was the quickest to get something started.
Immediately you have a web server that reloads the page on changes and
best practices right out of the box. With the other two, you might spend
time con�guring Webpack or Gulp to get a project o� the ground. You might
�ddle with how you want the project laid out. Or you might spend time
searching for a boilerplate project to copy. By virtue of being opinionated,
Ember removes all that friction.

http://todomvc.com

64 Chapter 2. Analysis

Yet, for me, Ember took the longest to learn of the three. For such a small
toy project, it felt like overkill. Also, it seems there are speci�c ways Ember
wants you to do things and going outside of that is di�cult. [. . .] To
me that signals Ember would scale well to long-lived projects with many
developers. In comparison, the other two frameworks eagerly played along
with whatever I wanted to do. Angular 2.0 surprised me a little. It is
nothing like Angular 1.X, but it was easy to build the app once I found
some examples to learn from.

It is easy to see why these three frameworks are so popular. They all have
a lot of strengths. Because of that, I suggest you learn and work with
all three.”

So let me conclude: If you want to build a modern web app with a current generation of
WAF, Angular, React and Ember are more or less equivalent. The decision depends on
the associated ecosystem: Which other bricks are available for this WAF? The largest
blocks for our app are the �oor plan and the UI elements. The requirements regarding
a UI elements library depends on the decision whether the app should look like a
native app or not (see section 2.5.4). If you decide yes, this would be an advantage for
Angular. The Angular based Ionic project provides bricks which solve this problem:
The developer can place a switch place-holder which is then automatically replaced
with an Android or iOS implementation. The other large block – libraries handling geo
data – is discussed in the section 2.5.6.3.

2.5.6.3 Web map libraries

Web map libraries enable embedding of spatial data like aerial images, street maps or
vector data. External street maps or aerial images are typically incorporated as bitmap
tiles. The library stitches these tiles in the correct way and keeps track which tile is
representing which coordinates. When the user moves or zooms into these data, the
library loads only the new required bits or exchanges one tile through four new ones
to increase resolution. Besides, these libraries also allow to display and set pins (alias
markers) or render lines and areas from vector data e.g. from a GeoJSON �le. I present
three implementations: OpenLayers, Lea�et and Cesium.

OpenLayers is the oldest: OpenLayers 2 was already introduced into the DS2OS project
with the �rst web UI prototype. Meanwhile, there is the completely revised version 3.
The new API is incompatible with the old one. OpenLayers has numerous features,
whereby the inexperienced developer can not get easy into. This gap was �lled by
Lea�et, created as a more lightweight alternative. For Lea�et there are many ready to
use plugins, such as marker clustering, heat maps etc. It also supports marker detail
popup’s out of the box. Lea�et only supports one set of tile grids at a time, where
OpenLayers can handle totally di�erent tile grids in one map. This means that with
Lea�et it is not possible to lay the current building plan tiles over an aerial view. Possible
solutions: create a new building plan tile-set, or replace it with vector data.

2.5. Front-end 65

Cesium is the most recent of the libraries presented in this sub-subsection and is
out of the ordinary: “Cesium is a JavaScript library for creating 3D globes and 2D
maps in a web browser without a plugin. It uses WebGL for hardware-accelerated
graphics, and is cross-platform, cross-browser, and tuned for dynamic-data visualization.”
[http://cesiumjs.org]. Probably an interesting candidate for the future.

The decision for a library depends not only on the same, but also if an adapter to the
WAF already exists or how easy it is to implement. For Angular there is even a general
adapter called AzimuthJS11, allowing to switch between OpenLayers and Lea�et per
con�guration option. But there are also two classic 1:1 adapters from Angular for
OpenLayers 3 called ngeo12 and Anol13. For Ember there also exist adapters for both,
but in di�erent quality: ember-lea�et14 is a quite active project, where ol3-ember15 is
outdated. The �nal front-end design including my decisions is presented in section 4.3.

11http://mpriour.github.io/azimuthjs/
12https://github.com/camptocamp/ngeo
13https://github.com/omniscale/anol
14http://www.ember-leaflet.com
15http://boundlessgeo.com/2014/02/openlayers-3-ember/

http://cesiumjs.org
http://mpriour.github.io/azimuthjs/
https://github.com/camptocamp/ngeo
 https://github.com/omniscale/anol
http://www.ember-leaflet.com
http://boundlessgeo.com/2014/02/openlayers-3-ember/

66 Chapter 2. Analysis

2.6 Requirements list

This list concludes the analysis chapter by summarizing the resulting requirements.
The functional requirements are split into front-end and back-end. Notations in round
brackets – e.g. (1.2.3.4) – are references to the text section they are derived from. There
they are in turn referenced with <R.x>.

Front end requirements

<R.1> UI is customizable via extensions (2.2.4)
<R.2> UI renders devices on �oor plan

<R.3> Floor plan is zoomable via gestures (2.5.2.2)
<R.4> UI supports buildings with multiple �oors by providing selector to

switch between di�erent �oor plans (2.5.2.2)
<R.5> Floor plan allows multiple devices at the same XY coordinates (2.1.4)
<R.6> Icons become smaller/grouped in lower zoom levels (2.5.2.2)
<R.7> Shape and place of rooms are modelled (2.5.2.1)

<R.8> UI allows tablet usage in landscape and portrait mode (3.2, 2.1.4)
<R.9> Login via username/password, certi�cate or other identity mechanisms

should be possible
<R.10> Tablets should be usable as non-personal devices: One tablet can be used by

multiple users with di�erent permissions (2.1.4)
<R.11> UI allows system administration and con�guration
<R.12> Admin and Usage scenarios are split into di�erent UI views (c.f. free@home

in each sub-subsection of 2.5.2)
<R.13> Debugging: The app should enable the user to understand why something

does not work and support her at investigating why that happened. (2.1.2)
<R.14> Multiple home or sites in one app or separate apps on the same device should

be possible.

Backend system requirements

<R.15> Is it possible to restrict users to only be able to control certain and not all
devices

<R.16> New devices are automatically discovered, without user input like devices
address etc.

<R.17> Systems allows installation of extensions via central repository
<R.18> Systems knows concepts of rooms, device types, etc.

2.6. Requirements list 67

Constraints/Pseudo requirements

<R.19> UI is implemented as web app.
<R.20> Web app uses current generation web application framework (WAF): Angu-

lar, React or Ember. (2.5.6.2)
<R.21> Fast development cycle: Real world usability can only advance when sug-

gested improvements by users can be implemented and deployed in a rea-
sonable amount of time. (2.1.5.4)

<R.22> Developers should be able to use newest HTML5/JavaScript APIs without
having to take care of older browsers. (2.5.6.1)

<R.23> External libraries and their dependencies should be managed by tools and
not manually. (2.5.6.1)

<R.24> System setup and usage should work without internet connection (2.1.3).

Quality requirements

<R.25> The interface should be self explaining, so that users can use it without
having to read a manual.

<R.26> How long does it take to start the app, time from touch to lamp on, time
from window opened to status change.

<R.27> If something is done automatically by the system, users want to be able to
understand and investigate why that happened. (2.1.5.4)

<R.28> It should be possible for future developers to improve the prototype without
an extensive training period.

<R.29> Third-party developers should be able to add new UI elements in an easy
way

Requirements 1–20 are used to evaluated the UIs presented in chapter 3 (Related Work)
and reappear in collected form in section 3.4. Their ful�lment through this work’s
results is checked during chapter 6 and 7.

69

Chapter 3

Related work

After having analysed the problem domain and deduced requirements, we now investi-
gate how existing products are addressing these problems. Speci�cally, we take a closely
look at the openHAB project, ABB-free@home and Apple’s HomeKit. The individual
requirements are referenced with <R.x>. If a requirement is met by the product/proto-
type its referenced with <R.x>X, if not it is crossed out: <R.x>�. The chapter is closed
by an comparison table in section 3.4.

3.1 openHAB

Figure 3.1: openHAB 2.0 Paper UI: control center [27, still from alpha1 preview video]

openHAB is a vendor and technology agnostic open source home automation software
and community. Some parts were split into an own project called Eclipse Smart Home
(ESH). As its name suggests this new project is hosted at the Eclipse Foundation. ESH is

70 Chapter 3. Related work

used by vendors like Deutsche Telekom AG/QIVICON or JUNG Elektro GmbH [28, slide
20]. As of June 2016 the development of ESH is ongoing and openHAB 2 is still in a
beta state. Version 1 of this system was already introduced in section 2.1.4.

There are native iOS and Android, as well as multiple web based UI implementa-
tions <R.19>X. The UI elements are not customizable <R.1>�. New ones can only be
added through new openHAB releases, forking an existing UI, or creating a new one.
They do not use �oor plans <R.2>�, but are supporting multiple �oors <R.4> through a
workaround.

In a vanilla openHAB 1, the system administration had to be done manually with a text
editor. The design was �exible enough to allow a third party to develop a graphical
administration web UI called HABmin. With openHAB 2 comes a new administration
app <R.11> featuring auto-discovery <R.16>X. This web app (see Figure 3.1) is imple-
mented using the Angular library, which is a current generation WAF <R.20>X and
allows installation of extensions from a central repository <R.17>X. The UI design is
responsive and works in landscape and portrait mode <R.8>X.

With openHAB 2 beta1 the split between con�guration (Paper UI) and general usage/-
operation (Basic UI) was introduced <R.12>X. The administrator can create users with
user name and password <R.9>X, but not restrict their rights <R.15>� as di�erent roles
are currently not supported. Therefore non-personal tablets with di�erent permission
modes can not be implemented without workarounds <R.10>�.

In openHAB 1.x the data model and UI based on a menu tree. The menu structure
is de�ned via a sitemap �le, which references widgets which reference items, which
reference a binding. Each item (attribute of a device) was typically added to a group
representing the room. This room-group was then added to a group representing the
�oor. The �oor-group was referenced in the sitemap. Alternatively, a device item could
also be referenced directly in the sitemap. If you want to implement an all ‘lights o�
switch’, you have to create an additional group for all lamps and assign each lamp
manually. With openHAB 2 this structure was reversed: Now a binding can provide
multiple things, which have one ore more channels, which can be mapped to items.
Things can have a physical location, but if a location is a room name or a coordinate is
not de�ned. As far as I understood, the openHAB development team has not decided
yet 1 2 3 4, how exactly to tackle this problem in version 2. As of June 2016 shape and
place of rooms are not modelled <R.7>�.

Side note: If you like to investigate the development of web UIs over time, openHAB’s
UI evolution is actually an interesting case study: The Classic UI (Figure 3.2) is a set
of web pages styled to look like iOS 6 App. GreenT (Figure 3.3) is an actual web app
implemented with Sencha Touch 2.0, and openHAB 2.0 features the Paper UI (Figure 3.1)
and Basic UI both created with help of Angular (see 2.5.6.2).

1https://github.com/eclipse/smarthome/issues/1083
2https://github.com/eclipse/smarthome/pull/1019#issuecomment-183245341
3https://github.com/eclipse/smarthome/issues/1093
4https://github.com/eclipse/smarthome/issues/582

https://github.com/eclipse/smarthome/issues/1083
https://github.com/eclipse/smarthome/pull/1019#issuecomment-183245341
https://github.com/eclipse/smarthome/issues/1093
https://github.com/eclipse/smarthome/issues/582

3.1. openHAB 71

Figure 3.2: openHAB classic Web UI, based on the WebApp.Net framework
[from http://openhab.org]

Figure 3.3: openHAB GreenT Web UI, implemented with Sencha Touch framework
[from http://openhab.org]

http://openhab.org
http://openhab.org

72 Chapter 3. Related work

3.2 free@home

ABB-free@home® 04 Commissioning

System Manual │21

Fig. 14 Setup of the main menu

Fig. 15 Setup of the working area

01 - Floor plan
02 - Enlarge / Reduce
03 - List view

Figure 3.4: free@home main menu from [16]

The home automation system free@home is developed by Busch-Jaeger Elektro GmbH
and marketed outside of Germany by its Swiss mother company ABB Ltd. Thus the
German name “Busch-free@home” translates to “ABB-free@home”. See also sec. 2.5.2.

The UI is not customizable <R.1>� but features a zoomable �oor plan <R.2>X <R.3>X,
supporting multiple �oors <R.4>X. The user can only approximate a room’s geometry.
The coordinates have symbolic meaning and are only a vague reference to the actual
building. Therefore, devices on top of each other <R.5>� have to be untangled by moving
icons. When zooming out, icons switch to a smaller version <R.6>X. Anyway, shape
and place of rooms are modelled <R.7>X.

The system administration is fully done within the app <R.11>X and the UI is strictly
separated in administration and usage/operation <R.12>X. The working area of the
administration screens are all designed in a consistent way: About three-fourths of the
horizontal screen space is dedicated to the �oor plan, the other quarter is either a list or
con�guration view. The lower bar always displays things to add (compare Figure 3.5
to 3.8). The general usage interface is also �oor plan based, but only displays actuators
and no sensors like wall switches.

The app is implemented as web app <R.19>X using the Qooxdoo library <R.20>�. It’s
designed to only work in landscape mode <R.8>�. The vendor provides a hybrid app
for iOS and Android, which auto-discovers the central gateway running a web server
(called “SysAP”).

As this system is designed for homes, there are only three di�erent access levels <R.15>�:
Operation: Can only operate devices and can not make permanent changes to the system;
Con�guration: Can not make changes critical to the system (changing settings related

3.2. free@home 73

ABB-free@home® 04 Commissioning

System Manual │23

Fig. 16 Creating the house structure - View of all floors

Fig. 17 Creating the house structure - View of one floor

Figure 3.5: free@home: Adding �oors from [16]

to the bundling of channels for dimmers, re-con�guration of binary inputs); Fitter :
Electrician, has all access rights (Master reset, creation of EF data protection). [16, p. 18]

The system is not vendor-independent. There is no store through which additional
apps can be installed <R.17>�. Apart from a Phillips Hue integration and hacks via
binary inputs and outputs, there is no o�cial way to integrate systems from other
manufacturers. There is an arti�cial limit of 48 devices, where a 8 channel actuator
with 8 additional binary inputs counts as one device, but each Hue bulb also counts as
one device. The system knows the concepts of rooms and the vendor’s device types
<R.18>X.

To understand the concepts of this UI in more detail, let’s assume the user has just
installed the app in their tablet and using it for the �rst time: After selecting the system
language and setting an admin password <R.9>X the user is presented the main menu
(Figure 3.4). The user �rst has to create �oors (Figure 3.5), then individual rooms. Only
simple rooms with four or six corners are possible (cf. lower bar in Figure 3.6).

After that, the user goes to the next step: Placement. The system has detected all
connected devices <R.16>X in the background and lists the available ones in the lower
bar (Figure 3.7). The user moves the icon from this lower bar up to their location in the
�oor plan. Let’s assume the user places a light, as shown in Figure 3.7: After dropping
the icon, a dialogue pops up listing all actuators having a free lighting control channel.
They now have to identify the actuator by either local device operation (the actuator
has a dedicated ‘Ident’ hardware button) or by a three character code, generated from
the serial number. The dialogue screen allows to trigger each channel of the actuator to
�nd the correct one. Placing the corresponding wall button is easier: The user places a
touch sensor icon from the lower bar on the �oor plan, and selects it by simply pushing
the corresponding wall push-button (“rocker”). When the lower bar is empty or all used
devices/channels are placed, they can continue with the �nal step: Linking.

74 Chapter 3. Related work

ABB-free@home® 04 Commissioning

System Manual │23

Fig. 16 Creating the house structure - View of all floors

Fig. 17 Creating the house structure - View of one floor

 Figure 3.6: free@home: Adding rooms from [16]

ABB-free@home® 04 Commissioning

System Manual │25

Fig. 18 Dragging the application from the add bar

Fig. 19 Pop-up window with the suitable devices

Figure 3.7: free@home: Adding devices from [16]

3.2. free@home 75

ABB-free@home® 04 Commissioning

System Manual │29

Fig. 24 „Allocation" window

Fig. 25 Switching options

01 - Two-way circuit
02 - Group circuit
03 - Scene

Figure 3.8: free@home: Linking devices or adding scenes/groups from [16]

In the third screen (Figure 3.8) the user connects the sensors with the actuators. In
our example, the user �rst touches the desired sensor icon and connects the lamps by
touching each one. The system draws a blue line between the connected devices. They
have to con�rm the new con�guration with the blue tick at the bottom right. Now they
can check the wall button changed its behaviour by touching it.

This screen also allows to add scenes and groups by moving them up into the �oor-plan
from the lower bar. The di�erent options di�er in their default settings. For example
a blind group icon automatically connects itself to all blind icons inside the room it is
placed in. A scene di�ers from a group by storage of the setting of its assigned devices.
To con�gure a scene, they modify the state of the devices like normal operation – either
through the assigned hardware buttons or in the app – during the scene is opened.
These states are stored when the blue tick at the bottom right is touched and can now
be recalled by activating this scene.

I am not going into details regarding the last two large buttons of the main menu
(Figure 3.4): From a DS2OS view, they are only two other services: One provides
orchestration services based on time or sunrise/sunset; the other allows to con�gure
the buttons of an optional touch panel.

The two users I observed had problems with following details: Especially in the begin-
ning, users switch constantly back and forth between the Placement and Linking step.
As they are optical di�cult to di�erentiate, di�erent colours or backgrounds would be
helpful. When linking devices, one has to con�rm the new con�guration with the blue
tick at the bottom right: Users unwillingly discarded their changes as they forgot to
click the blue tick and were confused, why their new connection did not work.

76 Chapter 3. Related work

3.3 HomeKit

HomeKit is a home automation library from Apple Inc. It was announced as a pure
interoperability framework in 2014. Apple only provided a natural language UI as part
of Siri, data models, API and back-end. In June 2016, as part of iOS 10, Apple’s own
“Home App” and therefore GUI was announced. As this section was written between
announcement and release in September 2016, it does not include any analysis of this
app, but only the underlying technology.

HomeKit has currently no support for a �exible UI with third-party UI elements <R.1>�.
If developers want to try new concepts, they need to implement these as part of a
separate app e.g. by using the HomeKit sample code. HomeKit does not use �oor plans
and is menu based <R.2>�. The data model forces the user to assign each device to a room
<R.18>X, which in turn can be grouped by so-called zones e.g. ‘Upstairs’ <R.4>. The
speci�c geometry and position of the individual rooms and equipment is not registered
<R.7>�.

It is possible to grant individual users access to speci�c devices <R.15>X. The login is
done via Apple ID (mail address and password) and optionally a second factor <R.9>X.
HomeKit depends on iCloud Keychain sync, thus usage of di�erent logins on the same
device, becomes hard to handle <R.10>�. Probably Apple is prioritizing high device sales
which might be in con�ict with multi-user features in iOS. (Why to only sell one when
you can sell two for twice the price.)

Administration can be done graphically within most HomeKit apps <R.11>. HomeKit
apps can deal with multiple homes <R.14>X and support auto discovery <R.16>X via
Bluetooth LE and Bonjour/mDNS (Wi-Fi). Apple itself does not o�er a HomeKit web
app <R.19>�. If they do in the future, I expect them to use Ember <R.20> as it is used on
http://apple.com.

Apple distributes extensions typically by reusing their existing iOS App Store <R.17>X;
compare content �lters, audio plugins, or keyboard layouts. In these cases, the app in
the store only serves as a “delivery package”. In addition to the device types curated by
Apple, custom types are possible but not controllable via Siri or foreign apps <R.18>X.

http://apple.com

3.4. Comparison 77

3.4 Comparison

Table 3.1 gives an overview over this chapter using the applicable requirements from
section 2.6.

OpenHAB / ESH free@home HomeKit

target space type home home home

vendor independent yes no (yes)
UI requirements

R.1 ui-addons UI is customizable via extensions no, but open
source thus forks
possible

no no, but custom
apps on top of
HomeKit possible

R.2 floorplan UI renders devices on floor plan no yes no
R.3 zoomable Floor plan is zoomable via gestures n/a yes n/a

R.4 multiple-floors UI supports buildings with multiple floors via workaround yes via workaround

R.5 multiple-devices-
same-XY

Floor plan allows multiple devices at the
same XY coordinates

n/a no n/a

R.6 icon-size-zoom-
dependent

Icons become smaller/grouped in lower
zoom levels

n/a yes, become
smaller

n/a

R.7 room-geometry Shape and placed of rooms modeled no yes no

R.8 orientation UI allows tablet usage in landscape and
portrait mode.

yes no n/a

R.9 login/authentification Login via username/password, certificate or
other identity mechanisms should be
possible

Password Login Password Login Apple ID,
iCloud Keychain

R.10 non-personal-devices One tablet can be used by multiple users
with different permissions.

no no no

R.11 admin UI allows system administration and
configuration

yes yes yes

R.12 different-views Admin and Usage scenario are split into
different UI views

yes yes n/a

R.13 debugging The web app should enable the user to
understand why something does not work
and support her at investigating why that
happened.

no no n/a

R.14 multi-home Multiple home or sites in one app or
separate apps on the same device should
be possible.

n/a n/a yes

Backend system requirements

R.15 permissions Is it possible to restrict users to only be able
to control certain devices

no no yes, advanced

R.16 autoconfiguration New devices are automatically discovered,
without user input like devices address etc.

yes yes yes

R.17 store/packages Systems allows installation of extensions via
central repository

yes
Extensions repo

no yes
App Store

R.18 semantics Systems knows concepts of rooms, device
types, etc.

not decided yet yes, rooms +
closed set of
device types

yes
(for non-custom
types)

Constaints/Pseudo requirements

R.19 web-app UI is implemented as web app yes (+ native iOS,
Android apps)

yes
(+ hybrid apps)

no

R.20 current-generation-
waf

Web app uses current generation WAF
(Angular, React, Ember)

yes
(Angular)

no
(Qooxdoo)

n/a

�1

Table 3.1: Comparison of related work with applicable requirements from section 2.6.

79

Chapter 4

Design

In the previous chapters I introduced the appropriate knowledge and researched how
other projects addressed this problem area. In this chapter, I develop a system archi-
tecture and design to resolve the challenges resulting from the requirements listed in
section 2.6.

In the �rst section (4.1) I split the overall system into manageable components. The
second section (Back-end, 4.2) is about the �rst half of these components doing work in
background, the other section about the actual web app (Front-end, 4.3).

The individual requirements are referenced with <R.x>. If a requirement is ful�lled its
referenced with <R.x>X, if not it is crossed out: <R.x>�.

80 Chapter 4. Design

Webserver
(local)

Webrowser

Geo service

Geodatabase

UI Extension
Store

Front-end

KA1

Back-end

Web app

SQL

Figure 4.1: System structure diagram

4.1 System overview

The overall system is decomposed into the components shown in Figure 4.1 and in the
following enumeration. The individual components are de�ned in more detail by the
remaining sections of this chapter.

1. Knowledge Agent (KA)
2. Geodatabase: a PostgreSQL database with installed PostGIS extension.
3. Geo service: a VSL service bridging the gap between the geodatabase and the

VSL.
4. Web app: Source code is hosted on a local web server and executed by a web

browser on the user’s tablet or PC. Communicates with the KA and Store.
5. Extension store: A catalogue and storage place of the third party front-end

extensions. The development is not part of this work and does not exist yet.
Therefore it’s simulated by a (secondary) passive web server hosting �les.

In practice the system set-up of this work’s UI prototype is as follows: A tablet –
connected to a local Wi-Fi network – communicates with a local computer running a
VSL KA and VSL services. A web app on this tablet connects to the KA via a REST API
and the WebSocket protocol. This protocols are set by the current release of the VSL
KA. For web apps a system separation into back-end and front-end is typical. The web
server serving the apps resources can also be embedded into the KA. The Extension
store might be by proxied by the KA in future.

4.2. Back-end 81

4.2 Back-end

As described in the previous section, the back-end consists of the KA (1), a geodatabase
(2), the geo service (3) and an extension store (5). The geodatabase (see 2.4.2) is an
o�-the-shelf product, the KA (see 2.2.2) is provided by other members of the DS2OS
project team. The full design of the extension store is not part of this work. The KA
allows to set restrictions per node and therefore ful�ls <R.15>X. The VSL gateway
concept includes auto discovery, but there is no implementation yet <R.16>�. The same
applies for the S2Store and its package format <R.17>�. It has to be decided whether the
UI extensions are distributed via the S2Store or a separate extension repository.

This leaves us with the last back-end system requirement: “Systems knows concepts of
rooms and device types” <R.18>. One part of this requirement is provided by the existing
VSL implementation: Through double usage of VSL types, device hierarchies can be
built. The other part of requirement <R.18> are rooms. As explained in section 2.4.1 the
VSL has no speci�cation for this kind of data yet. The �rst part of this section is this
speci�cation. The other part is the API for a VSL service which allows to query and
modify this geo information.

4.2.1 Back-end geo data model

To ful�l the goals of this work I require an advanced geo-data model. During section 2.4.1,
I presented challenges for indoor building models and possible solutions.

Since the VSL is designed to work for spaces from a single �at to a o�ce complex, I
need to design a model that can take care of the special cases, without getting itself too
complex. I tackle this problem using the power of 3D space in the back-end. Devices
are not assigned to “o�ce 01.05.023”, but speci�cally to coordinate (52.4, 48.11, 1). The
relation between a device (point) and a room (polygon or polyhedron) is de�ned by
equations. The assignment of a device to a room solely results from its position within
that room’s geometry. This is a fundamental di�erence to the systems featured in
chapter 3, and resolves the challenges attached to divisible rooms and portable devices.

To compute this contains-relation the �oor plan is required as vector data. Floor plans
in today’s smart space UI are typically integrated as a bitmap image. When the space
is present as vector data, one can reuse it for actual display. This eliminates costly
maintenance of a bitmap �oor plan and reduces data redundancy. However, for a good
user experience more data besides room geometries such as doors, windows or furniture
is needed.

4.2.1.1 Structure

How should one model the individual rooms, devices, furniture, �oor, components,
buildings in a database? What are the relevant attributes of each type? Let me list theses
entities with their attributes:

82 Chapter 4. Design

• Rooms have a name and a polygon or polyhedron in 3D space
• Devices have a VSL path and a 3D point in form of single XYZ coordinate
• Windows, doors and furniture consist only of a point, polygon or polyhedron

in 3D space. If you want to change or delete them, you require a way to address
the individual elements e.g. via an id.

• Floors, building parts and buildings have a name and are described by a poly-
hedron. Compared to rooms, they can contain other rooms and might overlap
with each other.

Let me discuss the individual attributes in more detail: VSL path and room number or
name are quite similar. Relative to the site, they both address an entity and are unique.
Points, polygons and polyhedrons are geometries and thereby represented via the geom
type.

I further add a primary key, as unique identi�ers are always recommended for objects
in databases. In particular in distributed systems, random UUIDs should be used instead
of consecutive ones.

I want the geodatabase to be as �exible as the VSL, therefore I use one single database
table to represent all entities listed above, compare Figure 4.2. This leads to reduced
complexity for the �rst API implementation, as I do not have to create own methods
for each entity. In order to be able to separate the entities again in a di�erent layer or
reiteration, I add a string attribute named type.

This leads to the �nal attribute set for the combined entity “Location”: uuid, name,
type, geom

Furniture
3d

Floors
Parts

Devices
VSL path point (3d)

/agent2/gateway1/lamp4

Rooms
name cube (3d)

MI 03.05.038

Locations
uuid name type geom

/agent2/gateway1/lamp4

MI 03.05.038 room

ground floor floor

furniture

Figure 4.2: Combining all spatial entities into one

4.2. Back-end 83

0

1

2

3

z
x

y
[lat]

[lon]
[level]

-1

Figure 4.3: Four �oor example building with chosen coordinate system

4.2.1.2 Coordinates and geometries

In the simplest case the geom attribute contains a point with one 3D coordinate, which is
adequate for a lamp or an oven. In the case of a simple room it contains the base area as
a 3D planar polygon parallel to the XY-plane. In other words: the Z component of each
coordinate is the same. A standard rectangular room is therefore de�ned by at least four
di�erent 3D coordinates, e.g. {"type":"Polygon", "coordinates":[[[30,10,1],

[40,40,1], [20,40,1], [10,20,1], [30,10,1]]]}. Notice that the start and end
coordinate is the same. A �oor, a building, or multi-storey room is de�ned by a polyhe-
dron, e.g. a cube with eight di�erent 3D coordinates, which results in 30 entries list as
each surface of the cube is enumerated separately, see section 2.4.3.

In practice the end user does never see the actual �gures representing a location, only
icons rendered on-top of a �oor plan. Thereby during selection of the coordinate system,
I do not have to take the end user into account. WGS84 long lat has established itself as a
quasi-standard in web maps. Therefore this project uses latitude (lat) as X, and longitude
(lon) as Y coordinate (see Figure 4.3). The third dimension of the XYZ coordinates is
based on the �oor number. All coordinates with Z value between [0; 1[are part of the
ground �oor, [1; 2[the �oor above (British English: �rst �oor, American English: second
�oor) and a coordinate Z value between [−1; 0[is in the �rst basement. An alternative
is the height above mean sea level (MSL). But the actual MSL of the ground and the
�oor heights are normally unknown to users, whereby �oor numbers relative easily to
gather.

84 Chapter 4. Design

PostGIS (2.4.2) supports custom coordinate systems aka spatial reference systems1 and
is able to transform coordinates to di�erent systems. Therefore even an own CRS per
smart space would be possible without much overhead. But other parts of the design
might break e.g. usage of GeoJSON which only allows WGS84 long lat as speci�ed
by [10, Ch. 4] – whereby earlier versions of the speci�cation allowed other coordinate
systems.

4.2.2 Geo service API

In the previous section I speci�ed the geo data model, this section speci�es a VSL
service API which allows to query and modify this model. This geo service connects the
geodatabase with the VSL KAs (see Figure 4.1) by transforming VSL requests like get
/search/positionOf/* (get all locations in the database) into a corresponding SQL query
SELECT * FROM locations. To implement this functionality the VSL allows to create
virtual nodes (see section 2.2.1). For the example above: positionOf is a virtual node and
all read and write accesses are redirected to the appropriate callback method inside a
Java class of the geo service package.

The geo service has two main tasks: implement CRUD operations for the geo entities
(see previous section) and execute advanced queries e.g. search.

CRUD stands for create, read, update and delete [29, p. 381] which are the four basic
functions of persistent storage. These four operations can be found under di�erent
names in SQL: insert, select, update, and delete. The VSL has only the data access
operations get and set, so the question is how to map four CRUD operations to the these
two, compare Table 4.1.

Operation VSL SQL HTTP methods

Create ? INSERT PUT / POST
Read (Retrieve) get SELECT GET
Update (Modify) set UPDATE POST / PUT / PATCH
Delete (Destroy) ? DELETE DELETE

Table 4.1: Mapping VSL methods to SQL

Read is identical to a VSL get and update is identical to VSL set. To discuss the di�erent
implementation possibilities for the remaining operations, create and delete, I have
to expand a little: The VSL concept only allows to dynamically create and delete VSL
nodes if they are part of a list. Elements of a list node can be added with get /KA/gate-
way/device/list/add/<name> and removed with get /KA/gateway/device/list/del/<name>.
In my point of view, using a VSL get operation to changes state – as it’s currently done
– is a design �aw. A delete or create operation changes state, a regular read operation
(VSL get) does not. Therefore the delete operation should be performed by a VSL set
or a new VSL delete operation, having to be introduced. As the individual API entities

1http://postgis.net/docs/using_postgis_dbmanagement.html#spatial_ref_sys

http://postgis.net/docs/using_postgis_dbmanagement.html#spatial_ref_sys

4.2. Back-end 85

are implemented as virtual nodes, I can decide how to handle this issue. For create I
can reuse VSL set, as I do not need to di�erentiate if a object is created or updated. For
delete I can also reuse set – but this time with del as special keyword. An alternative is
an own virtual node, e.g. named deleteLocation.

Let us turn to the speci�c API entities: In the previous section I merged all entity types
into the Location entity. The client requests geometries of devices from the geo service,
so I name the virtual node providing access to them “geometryOf”. Geometries can be
represented as GeoJSON or WKT (see 2.4.3). A get /search/geometryOf/<foo> returns the
full geometry of the VSL path speci�ed by parameter foo as GeoJSON. To reduce the
implementation e�ort I decided to only return GeoJSON and not WKT. A set /search/ge-
ometryOf/<foo> <value> accepts GeoJSON, WKT and a BOX3D. WKT is more command
line user friendly than GeoJSON, and a BOX3D is a lot shorter to write than a correspond-
ing Polyhedron in WKT. All three formats can be handled with the same virtual node.
The Polygon speci�ed by GeoJSON snippet {"type":"Polygon", "coordinates":[[

[30,10,1], [40,40,1], [20,40,1], [10,20,1], [30,10,1]]]} is POLYGON Z((30

10 1, 40 40 1, 20 40 1, 10 20 1, 30 10 1)) in WKT.

The �rst implementation iteration with only geometryOf shows that this universal
approach might be too complicated. Thereby I de�ne a second virtual node positionOf
which ensures all return values are a single 3D coordinate, regardless what kind of
geometry is in the geom column. It is always the XY centroid with the lowest Z value
of the stored geometry. In case of a point is the selfsame, in case of a c-shaped corridor
in might be a point outside. Output format are three numbers separated by blank, e.g.
5.23 7.42 1.

The resulting API for the CRUD operations is described in Table 4.2, where foobar can
be a name, VSL path or UUID.

geometry position

Create
Update

set /search/geometryOf/foobar
{"type":"Polygon", "coordinates":[[

[30,10,1], [40,40,1], [20,40,1],

[10,20,1], [30,10,1]]]}

set /search/positonOf/foobar 5 2 1

Read get /search/geometryOf/foobar get /search/positonOf/foobar

Delete set /search/geometryOf/foobar del set /search/geometryOf/foobar del

Table 4.2: Geo service API, part 1: CRUD

86 Chapter 4. Design

Having speci�ed the basic CRUD operations of the geo service API, I now continue with
the more advanced queries. The remainder of this section deals with all get requests
which are not related to only one single object, for example “return all devices in the
living room” or “return devices near my current position”. With the setting described
above, there are three di�erent response types:

• location: only the name/path
• position: name/path and one coordinate aka centroid
• geometry: name/path with full geometry

As it is kind of complicated to design an API while thinking about all potential appli-
cations in an abstract way, let’s try to represent them by three examples: a tablet app
with �oorplan (Web UI 2) in di�erent development stages, a smartphone app, and other
services. An overview of the resulting API is also given in Table 4.3.

4.2.2.1 API consumer example 1: Web UI 2

When the smart space has only one �oor (milestone 1), Web UI 2 only needs to display
the devices on an existing bitmap �oor plan via get /search/positionOf/*. When adding
new devices the user should not have to enter VSL paths manually, therefore I require
get /search/devicesWithoutLocation to �ll an auto-completion or drop-down �eld.

In order to work with larger amounts of data (milestone 2: larger spaces, multiple
�oors, etc.) the Web UI 2 should be able to query only parts of the data, e.g. �ltered per
�oor. Since �oors are regular objects in the geodatabase, this can be achieved via a get
/search/positionsIn query. For all positions from the �rst �oor, on would perform a get
/search/positionsIn/1OG request.

The �oor selector UI element might require a list of all �oors of a building: get /search/lo-
cationsOfType/�oor or an extra virtual node get /search/�oors/*.

Web UI 2 milestone 3: The Floor plan is available as vector data from the geodatabase
and is no longer served via bitmap tiles – �ltered by �oor. The corresponding request
is get /search/geometriesIn/1OG, response is a GeoJSON document, which Web UI 2 can
pass to the web maps library, in this case Lea�et.

4.2.2.2 API consumer example 2: Smartphone UI

The phone knows its whereabouts and would like to query which devices are in its
immediate environment.

Via a get /search/locationsNear/<lat>/<lon> request, the phone gets a list of all loca-
tion names near the speci�ed coordinates. If the phone knows the current �oor, it
can get a �ltered response via the optional level parameter, e.g. get /search/location-
sNear/<lat>/<lon>/<level>. Future experiments have to de�ne if the response should be
limited by area or number of response entries.

4.2. Back-end 87

Ta
bl

e
4.

3:
Co

m
pl

et
e

ov
er

vi
ew

of
ge

o
se

rv
ic

e
A

PI

O
pe

ra
tio

n
VS

L
SQ

L
ge

om
et

ry
po

si
tio

n
w

ith
ou

t a
ny

 g
eo

m
et

ry

Cr
ea

te
se

t
IN

SE
RT

se
t /

ge
os

er
vic

e/
ge

om
et

ry
O

f/<
fo
ob
ar
>

{"t
yp
e"
:"P

ol
yg
on
","
co
or
di
na
te
s"
:[[
[3
0,
10
],

[4
0,
40
],[
20
,4
0]
,[1
0,
20
],[
30
,1
0]
]]}

se
t /

ge
os

er
vic

e/
po

sit
on

O
f/<
fo
ob
ar
>

x
y

z

Up
da

te
 (M

od
ify

)
se

t
UP

DA
TE

Re
ad

 (R
et

rie
ve

)
ge

t
SE

LE
CT

ge
t /

ge
os

er
vic

e/
ge

om
et

ry
O

f/<
fo
ob
ar
>

ge
t /

ge
os

er
vic

e/
po

sit
on

O
f/<

fo
ob

ar
>

De
le

te
 (D

es
tro

y)
se

t
DE

LE
TE

se
t /

ge
os

er
vic

e/
ge

om
et

ry
O

f/<
fo
ob
ar
>

de
l

se
t /

ge
os

er
vic

e/
po

st
io

nO
f/<

fo
ob

ar
>

de
l

VS
L

SQ
L

ge
om

et
ry

po
si

tio
n

w
ith

ou
t a

ny
 g

eo
m

et
ry

ev
er

yt
hi

ng
ge

t
SE

LE
CT

ge
t /

ge
os

er
vic

e/
po

sit
on

O
f/*

ge
t

SE
LE

CT
ge

t /
ge

os
er

vic
e/

de
vic

es
W

ith
ou

tL
oc

at
io

n

in
si

de
ge

t
SE

LE
CT

ge
t /

ge
os

er
vic

e/
ge

om
et

rie
sI

n/
<f
oo
ba
r>

ge
t /

ge
os

er
vic

e/
po

sit
on

sI
n/
<f
oo
ba
r>

ge
t /

ge
os

er
vic

e/
lo

ca
tio

ns
In

/<
lo
ca
tio
n>

lo
ca

tio
nT

yp
e

ge
t

SE
LE

CT
ge

t /
ge

os
er

vic
e/

lo
ca

tio
ns

O
fT

yp
e/
<t
yp
e>

lo
ca

tio
nT

yp
e

+
in

si
de

ge
t

SE
LE

CT
ge

t /
ge

os
er

vic
e/

lo
ca

tio
ns

O
fT

yp
eI

n/
<t
yp
e>

//<
lo
ca
tio
n>

co
or

di
na

te
s

ge
t

SE
LE

CT
ge

t /
ge

os
er

vic
e/

lo
ca

tio
ns

Ne
ar

/<
la
t>

/<
lo
n>

ge
t /

ge
os

er
vic

e/
lo

ca
tio

ns
Ne

ar
/<
la
t>

/<
lo
n>

/<
le
ve
l>

de
vi

ce
Ty

pe
 +

 in
si

de
ge

t
SE

LE
CT

ge
t /

ge
os

er
vic

e/
ty

pe
In

/<
ty
pe
>/
/<
lo
ca
tio
n>

re
ve

rs
e

ge
t

SE
LE

CT
ge

t /
ge

os
er

vic
e/

lo
ca

tio
ns

Re
ve

rs
e/

<f
oo
ba
r>

<f
oo
ba
r>

 is
 a

 V
SL

 p
at

h,
 n

am
e

or
 U

U
ID

M

ile
st

on
e

1
M

ile
st

on
e

2
M

ile
st

on
e

3

�1

88 Chapter 4. Design

4.2.2.3 API consumer example 3: Other services

The last example is about other services which want to access geo information to do
reasoning, e.g. interpret voice commands with context.

The virtual node named locationsIn allows hierarchical access. If your service wants
to list all devices in the living room, it requests get /search/locationsIn/livingRoom. The
response is a list of names of all entities within the location speci�ed by parameter – in
this example livingRoom.

Let’s assume a voice recognition service interpreting “Turn o� the lights in the living
room”. The key terms are lights and living room. Living room refers a room stored in
the geodatabase, lights refers to the type /gahu/lamp. The virtual node devicesOfTypeIn
aka typeIn is designed to answer such questions: get /search/devicesOfTypeIn//gahu/lam-
p//livingRoom. The response is an intersection of get /typesearch//gahu/lamp with get
/search/locationsIn/livingRoom.

The last virtual node created for usage by other services is locationsReverse. The request
get /search/locationsReverse//KA1/gateway1/lamp5 returns all locations in which the
entity speci�ed via parameter (in this case “/KA1/gateway1/lamp5”) is part of, sorted
ascending by area size, i.e. typically room, �oor, building, site.

Some implementation details of this API are described in section 5.2.

4.3 Front-end

Having dealt with the back-end design in the previous section, this one is about the
actual user interface. As described in the start of this chapter, the front-end consists of
a single component named “web app” (see Figure 4.1) to be built from scratch. Its UI
elements should be customizable via extensions <R.1> and use a �oor plan <R.2>.

4.3.1 Front-end libraries

In theory the UI could be implemented as native, web, or hybrid app – see section 2.5.3.
The task description for this thesis requires me to create a web app <R.19>. In contrast to a
pure native implementation, a web app works on all relevant platforms without the need
to create multiple implementations in di�erent programming languages. This allows
fast and continuous development cycles <R.21>X. New developers can improve the
prototype without an extensive training period as knowledge of HTML and JavaScript
is widespread. Some frameworks can generate native apps and web apps from the same
source code. If necessary in future, the web app can be bundled as hybrid app without
much e�ort.

4.3. Front-end 89

In the Analysis chapter, I introduced the Front-end libraries Angular, Ember and React
(2.5.6.2). In mid of 2015, I decided to use Ember in this project, due to the active
community and an expected sustainable further development. For example the APIs
will not break so easily from release to release, and a relatively large collection of add-
ons. With the Ember CLI utility a common project structure is endorsed, leading to
better understandable source code projects. Therefore new developers, especially ones
having experiences with Ember, can start contributing faster.

The web app’s source code is a modern JavaScript dialect (ECMAScript 2015 aka ES6),
HTML5 and SCSS <R.22>X. Instead of ECMAScript 2015 one can also use Typescript (cf.
React, Angular 2 – see subsubsection 2.5.6.2), however this is not the default for Ember
apps, yet. SCSS (Sassy CSS) is a syntax variant of Sass 3, and is a superset of CSS3’s
syntax.

Regarding the web map libraries, I introduced OpenLayers 3, Lea�et, and Caesium in
section 2.5.6.3. I select Lea�et for two reasons: New developers are more likely to cope
with it <R.21>X, there are ready to use plug-ins such as marker clustering, heat maps etc.
It also supports marker detail popups out of the box. The other reason is ember-lea�et,
an already existing add-on adapting between Ember and Lea�et objects. Therefore I
do not have to write my own glue code. This choice leads to some restrictions: Lea�et
only supports one tile grid at a time, where OpenLayers can handle di�erent tile grids
in one map. This means that the new prototype only displays the building �oor plan as
bitmap tiles and is no longer able to lay this �oor plan on top of other maps or aerial
photos. In the long term, however, the building plan should be rendered directly as
vector data and no longer as bitmap tile sets. Therefore the tile layer would be free for
other maps again and the problem would have resolved itself. In addition, a global map
with detailed �oor plan overlay is only reasonable when a user has access to several
smart spaces like building services companies.

As Human interface guidelines (2.5.4) I choose the Material Design speci�cation [22]
from Google Inc. In mid 2015 there were three di�erent approaches available on how
to implement these guidelines with Ember. I choose an add-on named ember-paper, as
it looked most promising and the authors of the other approaches started collaborating
on ember-paper.

4.3.2 Front-end software architecture

The next three sections go into more details regarding the actual software architecture,
the UI extensions and the graphical part of the user interface development process.

Through the choice of Ember and Ember Data, a large part of the web app’s software
architecture is already set. Ember implements a successor of the MVC pattern – so the
classes can be divided into models, views and controllers. Even though the controllers
are not called like that. The Ember Data classes are pre�xed with DS.

Figure 4.4 gives an overview of the architecture. The initial version of Web UI 2 has two
pages: A map and a list of the devices. Ember calls di�erent ‘pages’ Routes. Based on

90 Chapter 4. Design

PositionSerializer

ApplicationSerializer

DS.JSONSerializer

ListController

Service

ListRoute

MapRoute

DeviceDobject

Position

DS.Model

ComponentTemplateComponent

Template

RouteRouter

Communication

KA

DS.RESTAdapter

DS.Store

MapController

Controller

0..n

0..n

1

1

1

1..n

Figure 4.4: Software architecture of Web UI 2, heavy in�uenced by Ember

the URL, the Router class decides which Route is currently active. The corresponding
Route class requests the Models from the DS.Store and passes them to the Controller.
The DS.Store asks the KA via the Adapter for the data, if its not already in the DS.Store’s
cache. The Controller has a corresponding Template which de�nes the View. The
Template can include one or multiple Components which also have a view de�nition in
form of a ComponentTemplate, which again can include Components.

Ember Data has a �xed internal data model and comes with two API clients imple-
menting communication with a server side persistence layer: RESTAdapter and JSON-
APIAdapter. The Adapter connects the DS.Store with a back-end API by adapting the
data operations into HTTP requests. It has the responsibility to build URLs and map
operations to the corresponding HTTP methods. I opted for the RESTAdapter as it uses
a HTTP PUT for update as required by the VSL API (2.2.3), whereas the newer JSON-
APIAdapter uses HTTP PATCH. The conversion between back-end and front-end data
format is done via Serializer classes: The ApplicationSerializer implements the common
VSL concepts like handling child nodes, the PositionSerialiser further specialises by
transforming the result of a position query to front-end models.

The asynchronous back channel is implemented in the Communication class. It connects
to the KA via WebSocket and is noti�ed when one of the subscribed VSL nodes was
changed. When it receives a message from the KA, it looks if there is an Dobject
for that node in the DS.Store. If necessary it tells the DS.Store to update the model
class, which automatically results in view updates through Ember’s binding concept.
Communication and Store are both children of the Ember Service class and thereby
singletons, every Ember class can reach them.

4.3. Front-end 91

Model classes

For the this iteration of Web UI 2, the responses from the VSL API can be split in two
categories: positions and VSL nodes. I use three model classes to store the data on client
site: Dobject, Device and Position – compare Figure 4.5.

Ember::Component

BasicListBasicTextBasicNumber

GahuLamp

BasicComposed

Position

device: Device
center: LatLng

Device

position: Position
icon

Dobject

i d
value
type
restriction
access
parent: Dobject
children: Dobject

name
componentName

0..1

parent
children

0..n

Figure 4.5: Web UI 2 model with type based rendering component classes

A Position has a reference to a Device and the eponymous position representing the
centroid of the device as 3D coordinate. For the latter the LatLng class of the Lea�et
library is used, which – beside one would guess from its name, can store altitude as
third value.

The class Device is just a special case of a VSL node: It has a back reference to Position
and an attribute called icon which returns a Lea�et Marker instance. The device’s
attributes are modelled via the relation “children”, that the class inherits from its parent
class, Dobject.

The front-end model for VSL nodes is the Dobject class. The name Dobject is a short
form of “DS2OS base object”. It has two recursive references: one 1:n relation to its
children and a n:1 relation to its parent. This allows developers to traverse Dobjects
in both directions in an easy way. The other attributes are id, value, type, access, and
restriction. The id attribute is enforced by Ember Data and is the full VSL path. Value is
the actual content of the node, besides children. The type attribute is a list of VSL types
which is used to interpret the value in the UI. These types are de�ned in the VSL Model
Repository (CMR, see subsection 2.2.1). Restrictions and access read-only are enforced
by the UI components and the back-end - not here in the model layer. The method
componentName returns the Ember Component class name which is best suited for
rendering based on types. See subsection 5.3.4f for more information.

92 Chapter 4. Design

4.3.3 Front-end UI extensions

Subsubsection 2.2.4.1 described following UI extensibility scenario:

The user has radio controllable LED bulbs in his living room. The software
control element is build with three sliders, adjusting the red, green and blue
value of the light (compare left part of Figure 2.10). When he wants to dim
the light, all three sliders have to be adjusted, and he always needs some
time to �nd the right colour. As he is dissatis�ed with this situation, he
opens the “Extension Store”. There he �nds an extension that has only one
slider for the colour, a second slider for the intensity and a toggle switch
to turn the light o� (compare right part of Figure 2.10). He hits the install
button and the initial control element is replaced with the new one from
the extension. Now he can switch o� or dim the lights without destroying
the colour settings.

For this development iteration, a Web UI 2 Extension is a package consisting of one
or multiple Ember Components. A Ember Component consists of a ‘template’ (HTML-
Bars) and a ‘controller’ (JavaScript) containing the marker icon speci�cation and other
logic/interactivity code (4.3.2).

Each of these Components maps a VSL node type like /basic/text or /basic/number
to a corresponding HTML representation – e.g. for the previous examples <input

type="text"/>, <input type="number"/> or – if minimum and maximum values are
de�ned – <input type="range".../> etc.

To allow browsers to process the templates as e�ectively as possible, they have to
be preprocessed/translated into an intermediate format [30]. Thus, installation of an
extension from source currently requires either full ember development environment to
be installed, e.g. via npm install -g ember-cli or a customized build process using
the ember-cli-htmlbars2 module. [31]

In future iterations following issues have to be addressed:

• When an UI extensions is installed, should it be installed for all users/certi�-
cates using this Web UI 2 deployment, or should users be able to choose which
extensions they want to use and which not?

• When deciding to allow the latter, an new VSL services storing this user con�gu-
rations is required

• A back-end service needs to notify running Web UI 2 instances, when new UI
extensions are installed. Otherwise, users needs to trigger the web app’s reload
manually.

For a (central) UI Extension Store, decisions about the following issues have to be made:

• Package format: The most obvious is to base on ember-cli (in-repo) addons, npm
or bower packages. Or we could also decide to create a own format.

2https://github.com/ember-cli/ember-cli-htmlbars

https://github.com/ember-cli/ember-cli-htmlbars

4.3. Front-end 93

• Upload in source or binary: Should we force developers to upload the source code
to the UI Store? In contrast to a pure ‘binary’ exchange platform, the extensions
could be recompiled centrally if a future ember release changes the API or the
template intermediate format. Maybe even force them to provide git repositories
on github.com as it is typical for npm/bower packages.

• Distribute extensions in pre-compiled form to users? Or force users (or a service
in the user’s smart space) to compile the extensions themselves?

4.3.4 Graphical UI-Design

This section is about the development process of the graphical aspects of Web UI 2,
the prototype resulting from this work. Literature recommends to involve graphic
designers [2, p. 57], which are unfortunately not available in the DS2OS project group.
Therefore, for this iteration, I have to make decisions without input from the graphic
design �eld.

During chapter 2, Analysis, I elaborated scenarios from user interviews, which I used
to create a use-case model. A use-case model consists of actors and use-cases which I
revisit in this section together with the requirements.

The requirements (2.6) relevant for the GUI are:

<R.2> UI renders devices on �oor plan
<R.3> Floor plan is zoomable via gestures
<R.4> UI supports buildings with multiple �oors by providing selector to switch

between di�erent �oor plans
<R.5> Floor plan allows multiple devices at the same XY coordinates
<R.6> Icons become smaller/grouped in lower zoom levels
<R.8> UI allows tablet usage in landscape and portrait mode

<R.11> UI allows system administration and con�guration
<R.12> Admin and Usage scenario are split into di�erent UI views
<R.13> Debugging: The app should enable the user to understand why something

does not work and support her at investigating why that happened
<R.25> The interface should be self explaining, so that users can use it without

having to read a manual
<R.27> If something is done automatically by the system, users want to be able to

understand and investigate why that happened

The relevant actors for Web UI 2 are the Occupant and the Admin. Actors are a role an
individual can take, e.g. an Admin can simultaneously be an Occupant. (Section 2.3)
The use case model (Figure 2.11) provides the following top level use cases involving
an Occupant:

<U.1> operate/control devices
<U.2> manage device location: add, update, delete device positions
<U.3> con�gure service
<U.4> install service

94 Chapter 4. Design

Only the �rst two use cases are part of this release of Web UI 2 (compare Figure 2.11).

The top level use cases of actor Admin are explicitly not part of Web UI 2:

<U.5> manage �oor plan
<U.6> manage user, permissions

Nevertheless, <U.5> is part of this work, but without a GUI.

Let me combine this into a possible resolution:

In theory, everything can be on the �oor plan. But when users want to install a new
service into the space, they should not have to search for the computers running the
DS2OS in the �oor plan. So in any case I require some kind of menu to switch between
di�erent views or use cases.

The users can use this menu to switch between the �oor plan view, list view (both <U.1>),
the �oor plan view in edit mode <U.2> <R.12>, service management <R.11> (con�guration
<U.3>, service installation <U.4>), and UI preferences (install and uninstall extensions
<U.4>)

Due to the scope of work, the �oor plan view is in primary focus: I am required to build
the �oor plan <R.2> with a zoom control <R.3> and �oor/level selector <R.4>. On top of
the building plan are icons representing the devices. When users click on an icon, they
can inspect and change values <U.1> e.g. switching a light on. To fully implement <U.2>
there must be a way to add new devices to the �oor plan and move or remove existing
device positions. I choose to implement this by adding a “Floating Action Button” in
the right bottom corner, as known from Material Design (4.3.1).

The markers of the individual devices might even display its current state based on
colour or di�erent icons. E.g. Apple used a grey light bulb for an inactive lamp and a
coloured for an active one in their HomeKit presentation in 2014, see Figure 2.26.

As the device representations should adjust itself depending on zoom level, I require a
concept how device icons are handled, which come too close to each other, for example
the icons get smaller or are merged <R.6>. The latter is relevant for multiple devices at
the same XY coordinates <R.5>.

For the representation of the �oor plan itself, I presented di�erent existing approaches
in Analysis subsection 2.5.2 – my conclusion was that I require an abstracted version
with outlines of rooms, where gaps represent doors or maybe even windows. Optionally
also add �xed furniture such as tables (2.5.2.4). In my point of view, a North-oriented
�oor plan is suitable for Admins, where Occupants cope better with a rectangular
representation.

If users have access to multiple spaces <R.14> the likelihood of confusion should be
reduced. This can be achieved by a own wallpaper (cf. Apple iOS 10 Home App,
section 3.3) or colour schema per space. Support for tablet usage in landscape and
portrait mode <R.8> might require di�erent concepts based on the screen width.

4.3. Front-end 95

Figure 4.6: Paper prototype showing one �oor of a multi-family home

4.3.4.1 Paper prototype

During the design phase, I implemented an intermediate version of the UI described
above, as paper prototype. In usability engineering, paper prototypes are used to
design, evaluate and improve aspects of a user interface even before a running system
is available [2, sec. 3.4].

The prototype shown in Figure 4.6 consists of several parts: The left third is a vertical
menu, the other two thirds are occupied by the �oor plan. It is thought to mock an iPad
in landscape orientation and is in�uenced by Apple iOS’s settings and maps apps.

The building representation is as described above: walls are without diameter, doors are
indirectly represented by gaps in the walls, and not sub-circles describing the opening
direction. Also featured are large or �xed furniture such as seating, the TV in the living
room, tables, bed, bathtub, shower, sink and stairs. To simulate zoom, the �oor plan is
available in di�erent sizes – which were created via photocopier.

There is only one device, a lamp in the living room. The �gures depicts the situation
as the user has just touched on the maker and thereby opened a popup. The popup
contains a button for switching o� the lamp and its name. The lamp icon is available in
two versions: One switched on (with more rays); and one switched o� (without rays).

UI elements around the �oor plan: Zoom buttons at the top right. Underneath: vertical

96 Chapter 4. Design

list of �oors acting as �oor selector – the �rst �oor is selected.

What you still see in this design iteration is the side menu - in the �nal design, this was
remove due to feedback. The side menu lists the individual rooms per �oor. Selecting a
room in the menu would centre and enlarge the selfsame room in the �oor plan view.

The side menu also contains master functions for light, heating and energy. The idea was
to provide a complete overview: For lights a dark overall plan (cf. Figure 4.7), wherein
the switched-on lamps illuminate the rooms, cf. lightmap3; for heating a heatmap
actually displaying temperature; and energy with consumption history graphs or the
current energy �ow. Figure 4.7 shows two experiments regarding parallel display of
all �oors: Sub-�gure A is a perspective view, where renders �oors side by side. This
feature was not followed up in this work.

In the upper right corner is an option to �lter by device groups (lighting, HVAC, en-
tertainment, security etc.), which should improve getting an overview when there are
more than 50 devices in the building plan view.

The �nal UI is shown in section 5.3, speci�cally in Figure 5.1�.

(a) 2.5D general overview (b) side by side

Figure 4.7: Di�erent variants for parallel �oor plan display

3http://lightmap.uni-hd.de/

http://lightmap.uni-hd.de/

97

Chapter 5

Implementation

In the previous chapter I presented a design for a �oor plan based smart space user
interface and its associated back-end components.

This chapter presents relevant details from the implementation phase: Section 5.1
describes the database setup process including the schema; section 5.2 gives some details
on the implementation of the geo service itself e.g. the mapping between API calls and
corresponding SQL queries – highlighting interesting ones; and �nally section 5.3
describes the implementation process of the web app, including screenshots and an
interaction diagram.

98 Chapter 5. Implementation

5.1 Back-end: Geodatabase

The geodatabase is a PostgreSQL database with the PostGIS extension. I choose this
setup as I had some experiences with it from previous projects and many algorithms are
thereby available already in the database layer. This choice might arise some problem if
the whole server setup might be transferred to low budget home server like an Raspberry
Pi, but this was no requirement for this thesis. If such situation will arise in future and
problems occur, one might switch to SQLite with SpatiaLite. This change might require
changes on SQL queries.

As explained in subsection 4.2.1, the geodatabase layout consists of one table with the
columns uuid, name, type and geometry. This design allows �exible models without the
need to change database layout regularly. The relations between the individual entries
emerges indirectly from the geometry �eld. The following SQL statements produce an
instance of this database:

CREATE EXTENSION "postgis";

CREATE EXTENSION "uuid-ossp";

CREATE TABLE locations (

"uuid" uuid NOT NULL DEFAULT uuid_generate_v4() PRIMARY KEY,

"name" text UNIQUE,

"type" text,

"geom" geometry(GeometryZ, 4326) NOT NULL

);

CREATE INDEX locations_geom_idx ON locations USING GIST (geom);

Thus the geometry �eld can be used with advanced PostGIS functions, an indication
on the CRS is required. As discussed in section 4.2.1, I use WGS84 long lat in this project,
which the database knows as SRID 4326. The database requires the CRS to be set for all
geometries.

To add full 3D functionality to PostGIS (c.f. 2.4.3, in particular Listing 8), a additional
PostgreSQL extension has to be loaded:

CREATE EXTENSION "postgis_sfcgal";

Within the Ubuntu distribution, this extension was included starting with release 16.04.
Unfortunately, as of 2016 the PC in the AHN lab (aka bling – see 6.2.3 and 2.2.0) runs
an older Ubuntu release. The extension is also not included within the PostgreSQL
distribution1 I am using on my development computer. Compiling the extension oneself
is not simple task. For these reasons, I decide to only use PostGIS’s own functions for
this iteration.

1http://postgresapp.com

http://postgresapp.com

5.2. Back-end: Geo service 99

5.2 Back-end: Geo service

The geo service connects the geodatabase with the DS2OS VSL. Basically it transforms
VSL API requests like get /search/positionOf/* (get all locations in the database) into a
corresponding SQL query SELECT * FROM locations. For further details have a look at
the corresponding section 4.2.2 of the Design chapter. Table 5.1 gives an overview about
the implemented methods. Future work on this component is outlined in section 7.3.

Some notes on special cases:

get /search/positionOf/<name>
get: return the centroid of the entity speci�ed by parameter <name>.
SELECT uuid, name, type,

concat(ST_X(ST_Centroid(geom)), ’ ’,

ST_Y(ST_Centroid(geom)), ’ ’,

ST_ZMin(geom))

FROM locations WHERE name = ?

possible extension: when value is only a lat/lon coordinate: do not overwrite
more detailed geometry in database, instead merge: For 3d points: get z and only
overwrite x and y. For more complex geometries:

– get centroid of old geom,
– calculate a move vector between this centroid and the new location
– move existing geom by this vector

get /search/geometriesIn/<name>
Returns geometries of all objects which are spatially inside of the object speci�ed
by parameter <name> as GeoJSON.
To simplify room data management the design allows planar areas for simple
rooms (see section 4.2.1). Therefore a special handling has to be implemented
for this case: Instead of a classic intersection in 3D space we have to �lter for all
elements between Z ≤ z < Z + 1, where Z is the level of object <name> and z
the level of the individual objects to be �ltered. The result set is than intersected
in 2D and we get the �nal result. The actual runtime order of the �lter steps in
the SQL query is not important as the query optimizer of the database takes care
about the optimal order. To get the level of the geometry I use ST_ZMin().
SELECT d.uuid, d.name, d.type, ST_AsGeoJSON(d.geom)

FROM locations d, locations area

WHERE ST_ZMin(area.geom) <= ST_ZMin(d.geom)

AND (ST_ZMin(d.geom) < ST_ZMin(area.geom)+1

OR ST_ZMin(d.geom) < ST_ZMax(area.geom))

AND ST_Contains(ST_Force_2D(area.geom), ST_Force_2D(d.geom))

AND area.name = ?

100 Chapter 5. Implementation

Method VSL
method

Description SQL query key

used by Web UI 2.0

positionOf/* get returns centroid for every object in the geodatabase getAllCentroids
getAllDeviceCentroids

positionOf/<name> get returns centroid for object specifiyed by parameter <name>, same
format as above

getCentroidByName

set insert or updates geometry of object specified by <name> in(to) the
geodatabase – similar to set geometryOf, but in simpler format.
possible extension: when value is only a lat/lon coordinate: don’t
overwrite more detailed geometry in database, instead merge.

insert,
updateGeom

devicesWithoutLocation get returns VSL paths of all nodes directly below a Gateway (devices),
which do not have a geometry assigned yet

getDeviceLocations

implemented + integration test

geometryOf/<name> get returns geometry of the object specified by <name> as GeoJSON getGeomByName

set insert or updates geometry of object specified by <name> in(to) the
geodatabase. Recognises if the input is GeoJSON, WKT or BOX3D

insert,
insertWKT,
insertBOX3D
updateGeom,
updateGeomWKT
updateGeomBOX3D

geometryOf/<name> del
postitionOf/<name> del

set deletes object specified by <name> from geodatabase. delete

implemented, currently unused
and without integration test

geometriesIn/<name> get returns geometries of all objects which are spatially inside of object
specified by parameter <name> as GeoJSON.

getGeomsInName

positionsIn/<name> get returns centroid of all objects which are spatially inside of object
specified by parameter <name>. Same implementation as above, but
returns centroids and not geometries.

getCentroidsInName

locationsIn/<name> get returns names/paths of all objects which are spatially inside of
object specified by parameter <name>. Same implementation as
above, but without any geometry.

getLocationsInName

locationsReverse/<name> get returns list of locations (names of area/room/building) in which object
<name> is part of.
sorted by geometry size. (First area, room, then building, site etc)

getLocationsReverse

typeIn/<type>//<location>
deviceOfTypeIn/<type>//<location>

get returns VSL paths of nodes with type specified by <type> which are
inside of the geometry of <location>. Intersection of typeSearch
with data from geodatabase.

getDeviceLocationsIn
Name

locationsOfType/<type> get returns list of locations (names of area/room/building) where the
content of type column equals parameter <type>

getLocationsOfType

locationsOfTypeIn/<type>//<location> get returns list of locations (names of area/room/building) where the
content of type column equals parameter <type> and which are
inside of the geometry of <location> – e.g. for floor list of a building.

getLocationsOfTypeIn
Name

locationsNear/<lat>/<lon>
locationsNear/<lat>/<lon>/<level>

get returns list of locations nearest to the specified <lat>/<lon>
coordinate, optionally filtered by <level>.

getLocationsNear

partially implemented but dropped
from specification

geometryOf/*
geometryTextOf/*

get returns geometry for every object in the geodatabase as GeoJSON getAllGeoms
getAllGeomsWKT

geometryTextOf/<name> get returns geometry of the object specified by <name> as WKT

geometriesTextIn/<name> get returns geometries of all objects which are spatially in object specified
by parameter <name> as WKT.

geometryReverse/<name> get returns list of geometries (area/room/building) in which an object
<name> is part of.

getGeomsReverse

�1

Table 5.1: Geo service implementation status overview

102 Chapter 5. Implementation

5.3 Front-end: Web app

The web app is implemented with Ember 2.6, the substantial addons are ember-data,
ember-paper 0.2, ember-lea�et and ember-websockets. The ember-paper addon provides
an implementation of Google’s Material Design Speci�cation (2.5.4).

5.3.1 Floor plan view

Figures 5.1 and 5.3 are screenshots of the map view: Depicted are �ve devices in the
TUM Autonomic Home Networking (AHN) lab as described in section 2.2: four lamps
and one blind. Each device is represented by a marker.

Figure 5.1: Web UI 2 RC1 map view with open lamp popup

When the user touches a marker, a Lea�et bubble popup listing the device’s attributes
is opened. In contrast to free@home (3.2), the app can not directly trigger an action, as
the VSL data model allows multiple attributes per device.

Figure 5.1 shows the popup of a lamp: There is only a single switch as this lamp type
has only one attribute of type boolean, named isOn.

Figure 5.3 shows the popup of a blind: This type consists of two attributes, both of
type percentage: a closed value of 50 means that one half of the window is shaded, 100
the window is completely shaded. The second value indicates the angle of the blind
panels. The percentage type is de�ned as number (aka integer) in the range from 0 to
100, which the UI represents by a slider.

To add a location to new devices, there is a �oating action button (FAB) with plus icon
at the bottom right.

5.3. Front-end: Web app 103

The markers have a shape, colour and an optional icon. The lamps are represented with
a white rounded marker, blinds with a blue rectangular marker with a blind icon inside.
Icons for di�erent blinds opening states are provided by knx-uf-iconset, but not used
yet. From my point of view, markers without a tip would be better for this use case,
but unfortunately the Lea�et extra-markers plugin only provides shapes with pointed
bottom. However, the user study (6.3) showed that the markers are very well recognized
because of the pointed bottom.

5.3.2 List / grid view

For smartphones and other small screens a list view might be more useful that a map
view – especially in portrait orientation. In a later iteration the list view was replaced
with a tile grid, to use the screen area more e�ciently. Figure 5.2 shows a prototype
reusing the same UI components as the map view’s popup. Future iterations of this grid
view could include tiles spanning over 2 columns or rows.

Figure 5.2: Web UI 2 RC4 grid view prototype

104 Chapter 5. Implementation

Figure 5.3: Web UI 2 RC1 map view with open blind popup

5.3.3 Web app – KA interaction

The software architecture has been described in the previous chapter (4.3.2), which I
largely implemented one-by-one.

The sequence diagram in Figure 5.4 shows the interaction between front-end and back-
end, starting at the time the user opens the app in her web browser.

The app starts with �oor plan view which requires the device positions. To do this, the
Web UI performs a HTTP GET request /search/locationsOf/* to the KA, the KA asks
the geo service for these information. The geo service responds with a list of tuples
consisting of a VSL path and coordinates. This response is forwarded back to the client
(Web UI 2) by the KA.

Thus we know all devices/their address in the VSL as well as their position on the �oor
plan. The �oor plan view shows �rst markers, but can not yet display what type the
respective device has. For this purpose further GET requests with the respective VSL
path have to be sent to the KA. The KA responds with a JSON document containing the
meta information as well as the names of the children, which are the available attributes.

If the user now touches on one of these markers, a popup opens, which implicitly
triggers further GET requests to the KA: For each child the same query is repeated as
above. We get type, value as well as children and can decide which UI element we need
to render in which state.

By changing the state of an UI element, e.g. a switch, the user triggers a PUT re-
quest to the KA. In the example shown in Figure 5.4, {value:"1"} is sent to /KA/gate-
way1/lampX/isOn/desired. This triggers a callback function in all services that have
subscribed to this desired node. In our case, this is the gateway service of the lamp. As

5.3. Front-end: Web app 105

User

User

User

implicit subscription

 for each child, e.g. isOn:

for each device:

 touches switch .

opens popup .

opens map .

Figure 5.4: Sequence chart of web app↔ KA→ Device interaction

the callback only contains the address of the changed node, the gateway has to query
the concrete value from the KA per get request and sends the corresponding command
to the lamp. In this case the lamp is not a smart device, so we do not know if this
was successful. However, we think positively and con�rm that the command was sent
by writing the new value to /KA/gateway1/lampX/isOn. As all instances of the Web
UI subscribed this node, they are noti�ed of the change via WebSocket. Again, this
message contains only the information that something was changed, but not the new
value. Therefore, the Web UI’s send HTTP GET requests to the KA, get the new value
and the switches in the other Web UI instances �ip to the new state.

In future iterations the Web UI might display this feedback even in that instance in
that the user initially triggered the change, e.g. by holding the movable part in a
intermediate state, till the con�rmation arrives (c.f. iOS switch, which is oval till change
was successfully performed).

106 Chapter 5. Implementation

5.3.4 Front-end extensions

Section 2.2.4 describes the extensibility of the Web UI desired by the project manager,
in the form of a scenario. The UI element selection algorithm has been described
there, too. In the current development iteration, a Web UI 2 extension consists of one
or more Ember Components. A Component always consists of a ‘template’ (HTML-
Bars) and a ‘controller’ (JavaScript) containing the marker icon speci�cation and other
logic/interactivity code (4.3.2).

Each of these Components maps a VSL node type like /basic/text or /basic/number
to its corresponding HTML representation – e.g. for the previous examples <input

type="text"/>, <input type="number"/> or – if minimum and maximum values are
de�ned – <input type="range".../> etc. Using {{foo-bar p=bla}} in a template, the
Component FooBar with parameter p set to the value of bla will be included.

The algorithm from 2.2.4 was implemented using a ‘component helper’, cf. {{component
p.device.componentName c=p.device}} in line 8 of Listing 10. The component helper
embeds the template speci�ed by the �rst parameter. In this case ‘componentName’ is a
method of the Dobject class returning the name of the responsible component as string,
see Figure 5.5.

Let’s revisit the AHN lab as described in (sub)sections 5.3.1, 2.2, and Figures 2.7, 5.1; and
substantiate the scenario from 2.2.4.1: In Listing 10a, line 4 we iterate over all positions
and create a marker for each one (line 5). We attach a popup to this marker (line 6–9)
and embed the corresponding component (line 8). As described above and shown in
Figure 5.5, ‘componentName’ is a method of the Dobject. Let us assume that the current
device is lamp1, which is of type /gahu/lamp, which is traced back to /basic/composed
(compare Listing 2, line 2). Therefore we embed the component shown in Listing 10b
which simply implements the rule for composed – to iterate over all children. lamp1 has
only one child node: isOn, which is of type /derived/boolean. So in line 14, we embed
Listing 10c which contains the switch as UI element. The other case in the AHN lab are
the blinds: blinds1 is of type /gahu/blind, which also traces back to /basic/composed, so
the UI again iterates over all children (line 13). This time these are closed and angle,
both of type /derived/percent. As the UI does not know this type, it falls back to the
next type /basic/number (compare Listing 3, line 5/10) and we are at Listing 10d. The
rule for number has a case distinction (line 18): As the restrictions minimumValue and
maximumValue exist, the corresponding UI element is a slider (line 19).

To allow browsers to process the templates e�ectively as possible, they are prepro-
cessed/translated into an intermediate format. Thus, even installation of an extension
currently requires the full ember development environment to be installed, e.g. via npm

install -g ember-cli.

In the future, the DS2OS project might provide ready to use, ‘compiled’ extensions for
end users. A possible architecture is a central UI Extension Store, in which developers
upload the source code of their new components. In contrast to a pure binary exchange
platform, the extensions can be recompiled centrally if a future ember release changes
the API or the intermediate format. (4.3.3)

5.3. Front-end: Web app 107

a) templates/map.hbs (Fig. 5.1, 5.3)
1 {{#leaflet-map center=center zoom=zoom as |layers|}}

2 {{layers.tile url="/static/fmi/{z}/{y}_{x}.png" minZoom="3" maxZoom="7" }}

3

4 {{#each positions as |p|}}

5 {{#layers.marker lat=p.center.lat lng=p.center.lng icon=p.device.icon as

|marker|}}↪→

6 {{#marker.popup}}

7 <h3 title="{{p.device.type}}">{{p.device.name}}</h3>

8 {{component p.device.componentName c=p.device}}

9 {{/marker.popup}}

10 {{/layers.marker}}

11 {{/each}}

12 {{/leaflet-map}}

b) templates/components/basic-composed.hbs (Fig. 5.1, 5.2, 5.3)
13 {{#each c.children as |child|}}

14 {{component child.componentName c=child}}

15 {{/each}}

c) templates/components/derived-boolean.hbs (Fig. 5.1, 5.2)
16 {{#paper-switch checked=c.value }} {{c.name}} {{/paper-switch}}

d) templates/components/basic-number.hbs (Fig. 5.3, 5.2)
17 {{c.name}}

18 {{#if c.restrictions}}

19 {{input type="range" min=c.restrictions.minimumValue

max=c.restrictions.maximumValue value=(mut c.value) disabled=c.isReadonly }}↪→

20 {{else}}

21 {{input type="number" value=(mut c.value) disabled=c.isReadonly}}

22 {{/if}}

Listing 10: Various excerpts from HTML-bars template �les

Ember::Component

BasicListBasicTextBasicNumber

GahuLamp

BasicComposed

Position

device: Device
center: LatLng

Device

position: Position
icon

Dobject

i d
value
type
restriction
access
parent: Dobject
children: Dobject

name
componentName

0..1

parent
children

0..n

Figure 5.5: Web UI 2 model with type based rendering component classes – copy of
Figure 4.5

109

Chapter 6

Evaluation

This chapter evaluates if the design and implementation of the web app and the geo
service meets the goals of this thesis. I combine evaluation methods from software
engineering (SE) and usability engineering.

The �rst section is classic SE and revisits the requirements concluding the analysis
chapter and checks analytical if they are ful�lled or not. Depending on requirement,
di�erent procedures are necessary: Some functional requirements and constraints can
simply be checked of, other requirements – especially ones related to quality – require
tests with actual users which is postponed to section 3.

In section 6.2 miscellaneous tests and measurements are performed: The �rst test checks
if the web app works with the three major desktop browsers – which is only successful
after several attempts, due to non-uniform implementation. Test 2 uncovers a bottleneck
in the back-end. Test 3 bridges desktop to mobile browsers: I examine the e�ects of the
network connection by comparing cable and Wi-Fi. Test 4 is like test 1, only this time
with mobile browser variants on two tablets: It turns out that we are set to a particular
browser per operating system because of the client certi�cates. Finally, Test 5 compares
the performance of the app between the tablet operating systems iOS and Android.

Section 6.3 uses user oriented procedures by inviting people to test the app into the lab,
to analyse how they manage usage.

6.1 Requirements evaluation

During the Analysis chapter, I compiled requirements (summarized in section 2.6) which
I revisit in this section: If a requirement is ful�lled it is referenced with <R.x>X. If a
requirement is not met, it is crossed out: <R.x>�.

Let’s start with the functional requirements for the front-end: The UI is customizable
via extensions <R.1>X, and renders devices on a �oor plan <R.2>X. Trough Lea�et,
the �oor plan is zoomable via gestures <R.3>X, but the current implementation does
not support buildings with multiple �oors <R.4>�. Multiple devices at the same XY

110 Chapter 6. Evaluation

coordinates and grouped icons in lower zoom levels might be possible with Lea�et’s
clustering plugin, which has not been tested yet <R.5>�. Lea�et has no build-in support
for zoom depended icons <R.6>�. The shape and place of rooms is modelled only in the
back-end, but not yet at the front-end <R.7>�, as the �oor plan is embedded as bitmap
tile set and not as vector data. On a tablet, the web app is usable in both landscape and
portrait orientation <R.8>X.

User authentication is done via client certi�cates <R.9>X. The practical usability of
client certi�cates in today’s web browsers on mobile and desktop PCs has to be tested
as part of a user study with web browsers on iOS, Android and on desktop PCs (Google
Chrome, Firefox, Safari). <R.10>, part 2: “One tablet can be used by multiple users with
di�erent permissions” currently only works if the OS or browser have multi-user sup-
port, as the corresponding KA feature to temporary upgrade permissions of a speci�c
client certi�cate is not implemented yet <R.10>. The current UI implementation is the
foundation for a modern web UI, concrete use cases like system administration and
con�guration have to be build on top <R.11>�<R.12>�. In order to enable the user to
understand what the system does in the background <R.13>, a full SHE implementation
with an API for KA and service logs, etc. is necessary. Such a SHE is currently not
available, therefore the web app can not give much insight <R.13>�. I assume there will
be at least one deployment of the web app per DS2OS site. Remote access is gained via
VPN. Therefore access to multiple sites from the same device is be possible <R.14>X. I
recommend to set a di�erent primary colour per site.

Functional requirements of the back-end: The VSL allows to restrict users, so they
can only control some devices <R.15>X. VSL gateway services with auto discovery of
new devices have not yet been implemented <R.16>�. The infrastructure for a central
extension repository and service inter-exchange between DS2OS sites does not exist
yet <R.17>�. But the VSL is aware of device types and with the geo service now also of
rooms <R.18>X.

Let’s check the constraints: The UI is implemented as web app <R.19>X and uses Ember,
which is a current generation web application framework <R.20>X. Implementation
as web app allows fast development cycles <R.21>X. Ember allows developers to use
newest HTML5/JavaScript APIs without having to take care of older browsers <R.22>X,
as its build chain transpiles the source code to a JavaScript dialect older browsers can
also cope with. Ember uses npm and bower to manage libraries and their dependencies
<R.23>X.

The quality requirements can not be checked of as easily as the other requirements.
Some require measurements <R.26>, other studies/tests with users performing the Oc-
cupant <R.25> or Developer <R.28> <R.29> role. But <R.27>“If something is done auto-
matically by the system, users want to be able to understand and investigate why that
happened.” can be dismissed already: The necessary back-end services, e.g. a full SHE
implementation, are not yet available. Therefore <R.27>� is not realisable within this
work.

6.2. Tests and measurements 111

Figure 6.1: Test setup at AHN lab

6.2 Tests and measurements

This section is about tests I can perform myself without calling in users. Speci�cally, the
following questions are to be investigated: Does the app work in all relevant browsers,
both on the desktop and on tablets? Are there bottlenecks in the overall system? How
does connection via wire in contrast to Wi-Fi a�ect the performance? Is the app’s
performance di�erent when run on iOS then when run on Android?

In order to carry out these tests, some preliminary work is necessary:

6.2.0.1 What to measure?

First: What to measure exactly? The initial loading time of the app? The reaction
time from touch of the switch, over lamp is actually on, to the KA callback arriving in
the app? Let me illustrate this start-up process: First, the app itself is loaded (HTML,
CSS, JavaScript), then the bitmap tiles and the marker images, then the metadata of the
devices (the markers change to their device-speci�c shape and colour). When clicking
on a marker, more speci�c data about the device (attributes, etc.) will be loaded and the
popup rendered (see 5.3.3). There are many di�erent events one can trigger at, some
even repeat several times. The nature of the used framework leads to concurrency
which makes measurement more di�cult. These concurrent activities might be disabled
to increase reproducibility as done in the benchmark mentioned below (“we’re forcing
frameworks to do more work synchronously than needed [. . .] to ensure run time can
be measured.”1), but I do not think it is a constructive solution for this case.

1http://browserbench.org/Speedometer/→ about

http://browserbench.org/Speedometer/

112 Chapter 6. Evaluation

6.2.0.2 How to measure?

Another question is: How to measure performance of a web app on the target platforms
(desktop PCs and tablets)? I came up of three ways: Through web browser debugging
tools and via additional JavaScript code – either within the existing app itself, or by
embedding the app via iframe as seen in JavaScript benchmarks.

Desktop browsers include ‘developer tools’, e.g. Google Chrome’s Timeline view
shown in Figure 6.2. It displays not only the pure processing time, but splits it up into
Loading, Scripting, Rendering, Painting, Other, and Idle. This allows developers to
analyse where bottlenecks are, which requests are made to the back-end, how long the
execution of JavaScript codes takes, and which resources take a lot of time to load or
render. Apple Safari and Mozilla Firefox have similar features. Some desktop browsers
can connect to their mobile variant via a USB cable and thus debug a web app running
on tablet or phone (Safari on iOS, Chrome on Android). How far values from Safari are
comparable with those from Chrome is unclear.

Figure 6.2: Web UI 2 RC1 in Google Chrome Developer Tools timeline with 105 devices

To measure via additional JavaScript code within the existing app itself exist ready
to use Ember plugins like ember-perf2. This plugin allows to trace transition and render
events, while the verbosity is controlled via the central con�guration �le. However,
I trigger the same problems as above: I can not identify the parts I want to measure.
During the initial call of the app, the same components are rendered several times – I
get a long list with times of which I do not know, which are relevant.

2https://github.com/mike-north/ember-perf

https://github.com/mike-north/ember-perf

6.2. Tests and measurements 113

JavaScript benchmarks are typically used to compare and improve JavaScript engines.
However, the early benchmarks are not really realistic in today’s reality: Benedikt
Meurer (tech lead of Google’s JavaScript execution optimization team) recommends3 to
test real websites and identi�es Speedometer from Apple’s Webkit Team4 as a benchmark
that makes it right:

“There’s another set of benchmarks, which try to measure overall browser
performance, including JavaScript and DOM performance, with the most
recent addition being the Speedometer benchmark. The benchmark tries
to capture real world performance more realistically by running a sim-
ple TodoMVC application implemented with di�erent popular web frame-
works.”

Perhaps the source code of this benchmark can be used for our use case – the code to be
adapted is at https://github.com/WebKit/webkit/blob/master/PerformanceTests/
Speedometer/resources/tests.js

6.2.0.3 How to collect data?

When I do the measurements myself via browser developer tools, I can simply use pen
and paper. When the measurement is embedded into the app, one can set up services
to collect and evaluate this telemetry data. For example, you could use the existing KA
infrastructure and create a new VSL service writing to a log �le. Alternatives are web
analytics tools like Piwik, which not only collects the data, but also provides reporting
features5.

For the sake of completeness: By integrating the web app build and test process into con-
tinuous integration systems like Jenkins, a continuous evaluation could be implemented.
Additional tests with a remote-controlled Chrome session or with Selenium6 might be
added. This would allow to understand which code change improved or worsened the
actual performance.

Further in�uences on the tests are: Was the app compiled in production or development
mode? How many entries are in the geodatabase? Has the browser cached parts of the
app?

6.2.0.4 Conclusion

For the tests in this document, I decided to only measure the time from (re)start till
the app has loaded everything aka ‘calmed down’, via the browser debugging tools in
Chrome and Safari. The tests where performed with the public stable releases of these
browsers, in February 2017.

3http://benediktmeurer.de/2016/12/16/the-truth-about-traditional-javascript-benchmarks/
4https://webkit.org/blog/3395/speedometer-benchmark-for-web-app-responsiveness/
5Piwik is probably not be best example, see https://github.com/piwik/piwik/issues/7131
6http://www.seleniumhq.org

https://github.com/WebKit/webkit/blob/master/PerformanceTests/Speedometer/resources/tests.js
https://github.com/WebKit/webkit/blob/master/PerformanceTests/Speedometer/resources/tests.js
http://benediktmeurer.de/2016/12/16/the-truth-about-traditional-javascript-benchmarks/
https://webkit.org/blog/3395/speedometer-benchmark-for-web-app-responsiveness/
https://github.com/piwik/piwik/issues/7131

114 Chapter 6. Evaluation

6.2.1 Test 1: Cross browser compliance on PC

This test should show if the web app works with all three major browsers: Google
Chrome, Mozilla Firefox and Apple Safari. Table 6.1 summarizes the results.

Preparation: All back-end components (KA, geo and gateway services, geodatabase)
are installed on my notebook (Intel Core i5, 2x2,8 GHz, with SSD). Each browser requires
the CA and individual client certi�cate. Some browsers use the operation system’s
certi�cate infrastructure and therefore share the certi�cate store – nevertheless the
current KA implementation requires every browser/client to have a di�erent certi�cate.

Setup 1: The KA runs at https://localhost:8082, the web app is served directly from
the development environment via ember serve at http://localhost:4200. Tasks:

1. open app in browser
2. switch lamp2 on via web UI
3. switch lamp2 o� via KA console

Hypothesis: When the lamp is switched on in the web UI the corresponding lamp in
the lab lights up. When it’s switched o� via console, the light extinguishes and at the
same time the switch in web UI slides back to o�.

Result 1: The WebSockes back-channel only works in Chrome. Firefox refuses to
connect due to a Cross-Origin Resource Sharing (CORS) issue: From the perspective
of speci�cation’s author (Mozilla employee) the browser must not send credentials
(in this case data derived from the client certi�cate) within the pre�ight OPTIONS
request7, whereas the KA implementation only accepts authenticated requests (as of
mid of January 2017). The responsible Google employee con�rmed that this probably a
bug in Chrome. So it is pure coincidence that this setup works at all. Safari fails with
an unspeci�ed TLS error opening the WebSocket connection.

I repeat the test with slightly changed setup:

Setup 2: The KA runs at https://localhost:8082 and now also serves resources �les
of the web app. By this way, browsers no longer categorize the communication between
KA and web UI as Cross Origin.

Result 2: In Chrome everything works as before, in Firefox the app works too, but
Safari still fails as above. A bug report8 suggest that Safari’s WebSocket implementation
has no support for client certi�cates at all. After a discussion with the corresponding
DS2OS project team member, we added an temporary workaround to the KA.

Setup 3: As in the previous test, everything is served from https://localhost:8082 –
but with following code change: When the WebSocket client does not present an client
certi�cate, fall-back to the identity Safari uses.

Result 3: Now everything works as expected. When multiple clients are a Safari, the
WebSocket return channel only works with exactly one of these. All further tests use

7https://bugzilla.mozilla.org/show_bug.cgi?id=1019603#c9
8https://bugs.webkit.org/show_bug.cgi?id=158345

https://bugzilla.mozilla.org/show_bug.cgi?id=1019603#c9
https://bugs.webkit.org/show_bug.cgi?id=158345

6.2. Tests and measurements 115

a KA including this workaround. In the future, the KA should support authentication
via token – at least for WebSockets. Such a token could be requested at the start of the
session via REST, where client certi�cates work without problems.

test iteration 1 2 3

Chrome X X X
Firefox ×9 X X
Safari × × X10

Table 6.1: Cross browser compliance of web app on notebook

6.2.2 Test 2: Finding bottlenecks

This test should reveal any bottleneck in the overall setup of KA, geo service, and web
app – excluding any interference by external network connections.

Preperation: With a python script I can generate random devices with XYZ coordinates
in the target area. They are named /agent2/gateway5/test3/device-XXXX. This script
accesses the database directly with SQL and is con�gured via command line parameters:
For example

• generate-random-devices.py -N 100 – adds 100 devices,
• generate-random-devices.py --remove – removes all entries generated by the

script from the database.

To avoid confusing errors in the browser’s JavaScript console, a dummy gateway ‘gate-
way5’ is implemented. It consists of a virtual node /agent2/gateway5/test3, which sends
a valid response to any get request.

Setup on a single computer: the web app, one KA with geo service, PostgreSQL database
and the dummy gateway.

Initially, the database has locations of �ve devices.

1. Open the web app with Google Chrome and open the Developer Tools Timeline.
2. Start recording and (re-)load the page, wait 10 seconds and stop the recording. The

timeline automatically focuses on the active time frame, as shown in Figure 6.2.
Check if the full page load was recorded, otherwise increase waiting time for
future iterations. Record the ‘total time’ listed below the pie chart in the bottom
left corner.

3. To record multiple samples, repeat step 2 �ve times.
4. Add 100 random device location to the database via generate-random-devices.py.
5. continue with step 2

9CORS pre�ight issue
10via workaround in KA

116 Chapter 6. Evaluation

Result: As expected and shown in Figure 6.3, the loading time increases linearly with
the number of locations being queried. The test starts failing with 505 devices, due to
VSL internal implementation issue regarding virtual nodes: The HTTP GET request
https://agent2:8082/agent2/geoservice/positionOf/* returns error 500, the KA
logs reads “Text message size [77389] exceeds maximum size [65536]”. This is a limitation
of the communication channel between KA and geo service.

This means that this setup can return up to about 405 positions, as in the currently
implemented milestone 1 (see 4.2.2.1) all devices are loaded at once. Of course, for
a productive deployment one would not load all data, but only these relevant to the
current view – e.g. only the current �oor, or only the visible devices. For smaller zoom
levels one might also implement server side device clustering and only transmit a single
location for the whole cluster.

1 2 3 4 5 6 7 8 9

5

105

205

305

405

1.32s

3.44s

5.03s

6.73s

8.04s

(median) time till web app has has rendered all entries [s]

nu
m

be
ro

fd
at

ab
as

e
en

tr
ie

s

Figure 6.3: Results of test 2 on 2,8 GHz Intel Core i5 PC with 5 samples per number of
entries which was performed with Google Chrome

6.2.3 Test 3: AHN lab: wire vs wireless

Running web app and KA on the same computer is probably not typical. A setup with
two computers is more realistic: One runs the KA, the other (e.g. a tablet) runs a web
browser with the app. To simulate this real world scenario, I deploy everything (KA,
geo and gateway services, geodatabase) to a Intel Core i5-2520M (2x2.5GHz, with HDD)
machine in the AHN lab. This machine has the hostname bling and is connected to a
integrated Ethernet switch of a Wi-Fi router. See left part of Figure 6.1, below the left
screen. The web app is served by the web server embedded into the KA.

https://agent2:8082/agent2/geoservice/positionOf/*

6.2. Tests and measurements 117

Setup: I perform three test runs, all with Apple Safari on following clients:

1. notebook (Intel Core i5, 2x2,8 GHz, with SSD) via wired Ethernet,
2. the same notebook via Wi-Fi, and
3. a fourth-generation iPad (Apple A6X, 2x1.4 GHz, Late 2012) via Wi-Fi.

The time measurements are all done on the notebook via the Safari’s web inspector
timeline. This works also in the last test run, as the iPad is connected via USB. For
each test run, the cache usage is disabled by reloading via Cmd+Shift+R. The tests with
desktop Safari are performed in private mode, so browser addons do not interfere.

Hypothesis: The notebook is slightly slower via Wi-Fi then via wire. The iPad is slower
than notebook Wi-Fi as it has older processor.

Result: The hypothesis was con�rmed, results are shown in Figure 6.5. The con-
crete time value can not be read o� as easy from Safari as with Chrome. My typical
workaround was to take the start time of the last event, see annotation (red arrow) in
Figure 6.4.

Figure 6.4: Safari Web Inspector Timelines on notebook Wi-Fi, with sample value 2.69s

1.5 2 2.5 3 3.5 4 4.5 5 5.5

notebook wired

notebook Wi-Fi

iPad Wi-Fi

1.65s

2.71s

3.35s

(median) time till web app has has rendered all entries [s]

Figure 6.5: Results of test 3 performed with Apple Safari 10, per subject 6-8 samples

118 Chapter 6. Evaluation

6.2.4 Test 4: Cross browser compliance on tablets

This test is similar to test 1, but this time on iOS and Android tablets instead of a
computer with a desktop OS.

Preparation and setup: Preparation as above, i.e. install client certi�cates on the
device, etc. Test browsers are Google Chrome, Mozilla Firefox and Apple Safari (last
one is iOS only). I reuse the back-end setup from test 3.

Result: On iOS the app only works in Safari, on Android only in Chrome: Apparently
the iOS versions of Chrome and Firefox have no UI to add client certi�cates within the
browser and do not access these in iOS’s key-chain for unknown reasons. Thus even the
app’s �rst REST request to the back-end fails and to no �oor plan is displayed. Firefox
has a the same problem on Android.

iPad 4 Galaxy Tab 4
(iOS) (Android)

Safari X n/a
Chrome × X
Firefox × ×

Table 6.2: Cross browser compliance of web app on tablets operation systems

Figure 6.6: Mobile devices test setup in AHN lab

6.2. Tests and measurements 119

6.2.5 Test 5: Android performance

Setup: I perform three test runs, all with the same release of Google Chrome via Wi-Fi:

1. notebook (Intel Core i5, 2x2,8 GHz, with SSD)
2. tablet: Samsung Galaxy Tab 4 10.1 (ARM Cortex-A7, 4x1,2 GHz)
3. phone: Motorola Moto E – 2nd gen. 4G model (ARM Cortex-A53, 4x1.2 GHz)

Hypothesis: On Android the web app is slower by a factor of 3 to 5, as there are
reports11 of performance issues with Ember in Chrome/V8 on Android. At the time of
the test, the app is using Ember 2.4. With Ember 2.10 major improvements have been
introduced12.

Result: With exactly the same release of Chrome, the web app is 2.89 times slower
on Android Phone or 4.47 times slower on Tablet; both compared to Chrome on the
notebook, cf. Figure 6.7. Compared to iOS Safari on an iPad 4, Chrome on the Android
phone needs 3.42 times or on the Android tablet 3.75 times as long to start the app, cf.
Figure 6.8.

2 4 6 8 10 12 14 16 18 20

notebook

Android tablet

Android phone

2.81s

12.56s

8.11s

(median) time till web app has has rendered all entries [s]

Figure 6.7: Results of test 5 performed with Google Chrome 53

2 4 6 8 10 12 14 16 18 20

notebook Safari

notebook Chrome

iPad Safari

Android tablet Chrome

Android phone Chrome

2.71s

2.81s

3.35s

12.56s

8.11s

(median) time till web app has has rendered all entries [s]

Figure 6.8: Results of test 3 and 5 combined, all connected via Wi-Fi

11https://bugs.chromium.org/p/v8/issues/detail?id=2935
12http://discuss.emberjs.com/t/why-is-ember-3x-5x-slower-on-android/6577/60

https://bugs.chromium.org/p/v8/issues/detail?id=2935
http://discuss.emberjs.com/t/why-is-ember-3x-5x-slower-on-android/6577/60

120 Chapter 6. Evaluation

6.2.6 Test 6: UI walk-through on mobile devices

This test is a complete walk-through through the whole app with each browser: Does
everything work as expected? Are there any feature di�erences? We know from test 4
that for iOS the app only works in Safari and for Android the app only works in Chrome.

Test sequence:

1. open app
2. switch lamp on
3. close blind
4. add a new device to �oor plan
5. switch to grid view, switch a device there
6. switch a device remotely and see how the switches move by themselves

Hypothesis: In theory we can assume that the app works in both browsers, as we
tested the desktop variants during test 1.

Results: With Chrome (Android) everything works as expected, in Mobile Safari (iOS)
touches on UI elements yield no reaction. For switches, I added a workaround13, sliders
are still broken under iOS. In some cases the event propagation is broken, e.g. sliding the
switch leads to displacement of the map and thereby the popup. Upgrading ember-paper
from 0.2 to 1.0 should �x some of this issues, but proper upgrading was postponed to
future work.

6.3 User study

As introduced in section 2.5.1, during UI development expert reviews (previous section)
and user tests (this section) should be alternated.

Based on the available resources, I decided to perform the user tests as ‘usability walk-
through’ as de�ned by Richter/Flückiger in [2]: “The user is accompanied by the test
facilitator, who is moderating the test sequence. The facilitator has the possibility to
intervene directly and walk through certain processes with the user. However, the
facilitator must know very well how to guide the user without a�ecting him too much.”
According to Nielsen, �ve users are typically enough to �nd over 75 percent of usability
problems [32]. Richter/Flückiger says one should use 4-6 people in iterative prototyp-
ing and not among 10 test persons in quality control prior to the introduction of the
system [2].

I performed the user tests with six users aged 20 to around 30 in the AHN lab in April
2017. All testers were male and have a computer science background. Five use Google
Android, one Apple iOS. The test setup consists of the hardware in the lab itself (lamps,
blind, misc sockets; see 2.2) and the web app prototype on a Linux desktop PC in Chrome,
on an iPad 4 in Safari, and an Android phone in Chrome. These are the same devices

13https://github.com/saerdnaer/ember-paper/commit/b79e4eb97131e5bd697abfc14831e8ce665b0f23

https://github.com/saerdnaer/ember-paper/commit/b79e4eb97131e5bd697abfc14831e8ce665b0f23

6.3. User study 121

with the same browser versions as in the previous section. The audio of all test sessions
is recorded for later analysis.

The tests were performed with Web UI 2 release candidate 4 (RC4) which has following
known bugs: The switch does not stop UI event propagation properly, whereby sliding
the switch leads to displacement of the map and thereby the popup. The slider does not
react to iOS touch events. The current releases of ember-paper and ember-lea�et �x
this problems – however, the type-dependent marker icons no longer work. Upgrading
these libraries was postponed to future work.

6.3.1 Results

All six users found the app intuitive to use. It was totally clear to touch the markers
and thereby open the popup, as they knew this concept from Google Maps. The design
and place of the plus button was perceived as common object. They were initially not
sure whether it was a native app or a web app. They found the performance of the
app acceptable, except for one exception: During �oor plan usage on the tablet one to
two users complained about the not so smoothly zooming – probably due to the 5 year
old and meanwhile discontinued device (Apple released the iPad 4 end of 2012). The
same users were satis�ed with the performance on the phone (Motorola Moto E 2nd
generation, released in February 2015).

The users only touched and did not slide the switch inside thepopup, thus the associated
bug was not noticed. To use a slider for blinds was seen as a good idea, one user even
found it useful for �ne tuning. When adding icons to the sliders like the Material Design
speci�cation [22] suggests (“Sliders may have icons on both ends of the bar that re�ect the
value intensity.”14) we should use the existing blind marker icons for the closed value
and brightness icons for the angle value.

Currently, new markers are created at a �xed position. It was suggested that we should
always use the centre of the screen. One user suggested to animate the appearance of
new markers with the plus button as origin. It was criticized that deletion of markers
has not yet been implemented. Some proposed displaying a deletion area at the edge
screen when a marker is touched (c.f. Android home screen), others a delete button in
a circular context menu after a long press (cf. OpenStreetMap web editor ‘iD’15). The
user which suggested the animation above, pitched to hide the plus button and place
the deletion area in that corner, thus a marker live cycle is established.

The grid view was well received, especially with the users who knew the predecessor
(list). However, the users wanted more structure, e.g. functions for sorting; �ltering;
and grouping the individual tiles according to status, device type, room, or �oor. One
user also remarked that due to existence of the �oor plan, too much spatial structuring
would not make sense.

14https://material.io/guidelines/components/sliders.html
15 https://blog.openstreetmap.org/2013/08/23/id-in-browser-editor-now-default-on-openstreetmap/

https://material.io/guidelines/components/sliders.html
https://blog.openstreetmap.org/2013/08/23/id-in-browser-editor-now-default-on-openstreetmap/

122 Chapter 6. Evaluation

Some testers were positively surprised that the individual instances of the app do instant
syncing, e.g. when a switch is �ipped in one instance, it automatically �ips in the others.

Surprisingly, the �oor plan is also quite usable on smaller screens of mobile phones. I
had predicted that the users would prefer the grid view on this device class.

6.3.1.1 Suggestions for improvement

All testers wished that they can change the device’s label. The current implementation
displays the last part of the VSL path as device name. The proper solution might be a
‘label service’ (similar to the geo service) which stores a VSL (sub-)path together with
a descriptive name, maybe even with localization features. One tester even suggested
personalized labels per user.

It was unclear that the texts ‘�oor plan‘ and ‘grid’ in the top bar are active elements,
which change the view. They touched the ‘�oor plan’ and nothing happened; they
touched ‘gird’ and the view was changed. It was proposed to highlight the current view
(aka route). A later lookup in Material Design speci�cation revealed, that there already
exist two solutions: Either a vertical menu or tabs16. Tabs are currently not (completely)
implemented in ember-paper, cf. https://github.com/miguelcobain/ember-paper/
pull/578. Additionally, the speci�cation states “Because swipe gestures are used for
navigating between tabs, don’t pair tabs with content that also supports swiping”, but the
�oor plan exactly captures these gestures to move the plan. So maybe we should choose
a vertical menu after all.

Save and recall of scenes and other group actions were missed. When a scene is
triggered, all a�ected devices/attributes should be displayed in a separate view. The
users wanted to see how the activation a�ects the devices, which could be ful�lled via
animation of UI elements. One user also suggested an undo function for accidentally
triggered scenes.

6.3.1.2 Bugs

When users controlled the blinds via the slider, the actual behaviour of the blinds was
confusing: The blinds moved down to 10%, but slider was at 50%. Explanation: The
web app transmits the values immediately, even as the user is still touching the slider.
Any further change is also immediately sent to the blinds gateway, but this rejects the
new commands with ‘Device is busy’ until the initial command is executed. It has to
be clari�ed if this issue should be �xed in the web app, in the Java gateway service, or
directly in the Arduino �rmware.

One user found the snap back and white �ashing of the �oor plan, when zooming too
far in, on the tablet too disruptive. The white �ashing might result from no map tile
being displayed for a short time – regular tiles have a grey or transparent background.

16https://material.io/guidelines/components/tabs.html

https://github.com/miguelcobain/ember-paper/pull/578
https://github.com/miguelcobain/ember-paper/pull/578
https://material.io/guidelines/components/tabs.html

6.3. User study 123

6.3.1.3 Survey questions

Since I had the users already there, I asked them on their opinion regarding how to
implement future features:

Currently, the marker icons are purely dependent on the type of the associated device.
When explicitly asked, all testers found that the state should also be included: For the
current white lamp marker nearly everyone suggested to use yellow. For RGB lamps,
one user recommended the current colour.

Although the markers can currently be moved directly, none of the testers accidentally
moved one. They could still imagine this to happen in practice. Implementation of
requirement <R.12> ‘Admin and Usage scenarios are split into di�erent UI views’ would
resolve this problem – about half of the testers found this solution a good idea. Others
proposed introduction of an undo feature, or snapping to the old position.

In 4.3.4 ‘Graphical UI-Design’ I stated “a North-oriented �oor plan is suitable for Admins,
where Occupants cope better with a rectangular representation.” One tester said: “Floor
plans, shown on tablets mounted to walls, should always be orientated in relation of
this mount point; and only on mobile devices it should be North-oriented.” Another
tester complained “I do not care where North is: Walls should be parallel to the display
edge.”

In one test, it was discussed to enable the self-locating via GPS/Wi-Fi, which is already
part of the used map library (Lea�et). The users position should be shown automatically
when opening the app, and disabled when the �oor plan is moved by gesture. While
the locating is enabled, the �oor plan should follow the users path automatically.

As the slider on the iPad (iOS) did not work (see above), I had prepared a separate test17

with the current releases of the libraries (c.f. Figure 6.9). All testers preferred the slider
from ember-paper to the ‘HTML5 native slider’ (<input type="range"/>). The paper
slider was referred as ‘more modern’ and ‘suites better to the switch’.

17https://ember-twiddle.com/890df418d241195b24497c377cff4332

https://ember-twiddle.com/890df418d241195b24497c377cff4332

124 Chapter 6. Evaluation

Figure 6.9: Separate test with current releases of the UI libraries

125

Chapter 7

Conclusion

This thesis laid the foundation for adaptive, state of the art graphical user interfaces
within the DS2OS project. Besides analysis, the main results of this work are a VSL geo
service and a �oor plan based web UI prototype, whose design is as �exible as the VSL.

7.1 Assessment

This section checks if all issues of the problem statement are solved. Let’s reiterate on
the problems with today’s smart space UIs initially introduced during chapter 1:

Solutions implemented for one space are not simple reusable in an other space.

• API is not abstract enough: services use �xed devices addresses and not generic terms
like ‘living-room lamps’.

With the geo service, such queries are now possible via the VSL.
As described in subsubsection 4.2.2.3, this query corresponds to
get /search/deviceOfTypeIn//gahu/lamp//living-room

• No or only insu�cient exchange platforms: no app store, but forums or blogs with in-
structions or snippets to copy&paste, rather than easily installable software packages
(apps).

Within the DS2OS project, there exist concepts, but currently no real
implementations of SHE and Store – aside from early prototypes.

Semantic relationships are not modelled as such, e.g. they are often only represented by
menu structures. Thus computers do not know, which device is in which room.

This problem is addressed by the geo service: ‘In which room is this device?’
translates to get /search/locationsReverse/<device-path>, and ‘Which devices
are in this room?’ to get /search/locationsIn/<name>.

126 Chapter 7. Conclusion

Some UI apps are not platforms in-depended, e.g. ActiveX ‘web UI’ requiring a Windows
desktop PC; or the devices UI app only exist for iOS but not for Android etc.

As the UI created within this work is a HTML5 web app and thereby usable
on all platforms, for which a current web browser is available.

Users themselves can not adapt the UI, but need to call in (external) experts for changes.

When comparing the current state of the Web UI 2 with the real world
as described in 2.1.5.4, it is already much easier to customize our UI. One
only needs ‘web developer knowledge’ and no special hardware. Once the
UI extensions store (which was not part of this work) is implemented, UI
customizing can be done by the common user.

Solutions are more expensive than they need to be: Instead of mounting Android tablets
to the wall, �ve times as expensive touch screens with a severely restricted feature set are
installed.

Web app is usable on cheap Android tablets (as soon as the app was loaded,
cf. 6.2.5).

Vendors create silos for their devices:

• UIs are distributed to di�erent apps or mounted in di�erent locations in a room.
• System overlapping group actions (scenes) are not possible due to non-existent,
proprietary or incompatible APIs.

The VSL, its gateways, and other services already solve the silo problem.
However, no one has implemented a real group/scene service yet.

New users have to �nd out which devices can be controlled and how these devices are
labelled in the UI, e.g. “Where is lamp 3?”.

This problem is addressed by using a �oor plan. Nevertheless the user
study (6.3) showed renaming devices (introduction of a ‘label service’) is
still desired.

7.2 Future work

This section lays out remaining issues and tasks to be addressed in future.

VSL architecture / Back-end

Currently, the Web UI is only guaranteed to work correctly, as long as only one client
is a Safari browser. Each additional Safari would fall back on the same certi�cate as the
�rst one, which makes the return channel unreliable (c.f. 6.2.1). To solve this issue, the
design has already been modi�ed [33, sec. 4.3.6f], but not yet been implemented. In
addition, the KA currently has a response limit of 65kB for virtual nodes (6.2.2). Again,

7.2. Future work 127

there is already a draft how to �x this [33, sec. 4.3.7.4], but to my knowledge it is not
implemented as of June 2017.

The VSL should be extended with arrays for return values, where an array is a col-
lection of multiple values without a key. Currently, typeSearch and geo service send
one string including dedicated separators, which the client has to split manually. (see
get /typeSearch/<type>, get /search/devicesWithoutLocation, or get /search/locationsRe-
verse/<name>.)

Analogous to the HTTP protocol, delete should also be added as VSL method besides
get and set (4.2.2).

Due to external dependencies, I could not tackle Debugging <R.13> and Traceability
<R.27>: There is no reasonable SHE implementation providing the necessary APIs, such
as programmatic access to logs, etc. As of May 2017, it is not yet possible to transfer
the services used at the AHN lab setup from the Screen session (2.2.2) to OSGI bundles.
Regardless of this, one could analyse implementing a SHE with systemd or NixOS
instead.

To provide ready to use, ‘compiled’ extensions for end users it has to be decided whether
the UI extensions are distributed via the S2Store or a separate one (4.2). A possible
architecture is a central UI Extension Store, in which developers upload the source code
of their new components, see subsections 4.3.3 and 5.3.4.

UI

Low hanging fruits are experiments with existing Lea�et plugins: The Clustering plugin
should resolve <R.5> and partial <R.6>. The heatmap plugin could be used to display
temperature (see 4.3.4.1).

Finish upgrade from Ember 2.6 to current release, see corresponding git branch at https:
//gitlab.dev.ds2os.org/ds2os-devs/web-ui2/commits/feature/ember-upgrade.

Upgrade ember-paper from 0.2 to 1.0, which introduces new features and components
like dialog, but requires modi�cation of templates. Replace HTML5 slider with Paper-
Slider. Add vertical menu (6.3) to replace �oor plan and grid links in top bar.

Replace bitmaps map tiles with vector data <R.7>: Preparatory work has already been
done – the building part of our research group/chair is available in the appropriate
format. There exists a python script fetching indoor data from the OpenStreetMap
project1 and importing it into the geodatabase. There is a GeoJSON plugin for Lea�et
(the web maps library used in Web UI 2), which should be able to consume the response
of get /search/geometriesIn/<�oor>.

Then the �oor selector <R.4> can then be implemented according to the speci�cation
in 4.3.4.1 and 2.5.2.4. Additional GUI challenge: How to switch levels, while holding
device icon, when moving devices across �oors; e.g. TV from ground �oor to upstairs.

1Side note: Other parts of the MI building are also available from OpenStreetMap.

https://gitlab.dev.ds2os.org/ds2os-devs/web-ui2/commits/feature/ember-upgrade
https://gitlab.dev.ds2os.org/ds2os-devs/web-ui2/commits/feature/ember-upgrade

128 Chapter 7. Conclusion

Then split the �oor plan into Usage and Admin view <R.12> – while Usage view does
not display all sensors (e.g. push buttons).

Filter by device type, e.g. lighting, HVAC, entertainment, security etc. – c.f. free@home
(3.2).

Switch to Typescript? Angular and React both use Typescript as default scripting
language – in long term Ember will switch to Typescript too, c.f. glimmer.js [30].
Perhaps, inheritance from Dobject to Device (4.3.2) might improve, but that is currently
not really an issue.

VSL services

Refactor current openHAB gateway from static approach to dynamic model to use VSL
/basic/list type, and retrospection features of the openHAB API. Enables realization of
auto-discovery and -con�guration <R.16>, add ‘inbox’ view to Web UI 2 as shown by
Paper UI (3.1) [27].

Create a VSL scene/group service allowing save and recall of presets for a collection of
devices (6.3.1.1).

Create an VSL extension service, which stores metadata like which user installed which
UI extensions and noti�es other UI instances when a user installed an UI extension so
they can get in sync without manual reload (4.3.3).

Geo service: Make positionOf subscribable, so other Web UI 2 instances are able to get
noti�ed when device locations are added or changed.

Allow linking devices in the �oor plan view, e.g. a lamp with a wall switch (3.2). Example
1: When connecting two devices of the same system – e.g. switch and lamp, the switch
should be automatically con�gured to the lamp’s address. Thus, the button touch
reaches the lamp directly, and does not has to be routed through the VSL. For example
a KNX switch should control a KNX lamp directly. But, when the user connects a KNX
switch with a non-KNX radio controlled outlet, the VSL comes transparently into play.
As of today, such con�guration is seen as gateway/system speci�c and therefore not
accessible via the VSL. Additional challenge: Connecting devices across �oors.

Evaluation of di�erent database implementations and schemas: How does PostgreSQL
with PostGIS perform on a Raspberry Pi (or similar) in contrast to SQLite with SpatiaLite,
for the data of a family home? Also evaluate 3D vs. full-3D vs. 2D geometry. (7.3)

The content of the KA HSQL database could be moved into the same database as the
geo data (2.4.2).

7.3. Discussion 129

7.3 Discussion

In my opinion the fundamental goals were achieved.

Front-end: In subsubsection 2.5.6.2, I quoted an article recommending to try out Ember,
Angular and React. In this work I only choose Ember, so should we implement the basic
features in other two frameworks, to make a good decision? Can one make a good
decision only after having implemented the basic features in all three frameworks, once?
I do not know – With Angular, Material Design would probably have been easier to
implement and the UI event propagation bugs might not have occurred. At the time
of the framework selection, Angular 2 was not yet announced, and it was unclear how
the Angular ecosystem would continue. Meanwhile in March 2017, Angular 4 has been
released. React is probably still interesting, especially because of React Native’s features
to create a native app from the same sources as the web app. Nevertheless, Ember’s
components concept was very helpful to implement the UI extensions and the upgrade
between Ember releases were feasible. At this point, I close with a quote from [34]:

“So how do you know what tool to use to build a modern web application? I
would recommend that you look at the demographics of your organization
to �gure out which framework will suit best.”

Back-end: A goal was to handle relations directly in the 3D space. I expected to take
3D geometries and everything works. It turned out that PostGIS – and maybe even
geodatabases in general – have no support for 3D solids and only store 3D surfaces. It is
almost impossible, to represent 3D surfaces in for humans easy readable text. Probably,
one should rework the geodatabase schema in a future iteration: Possible variants are:
Two geometry columns – geom_2d and geom_3d. Storage/caching of the centroid in a
separate column. Another variant is to store the room’s base area as 3D polygon and
use a separate column for the height to allow extrusion. Or only store 2D geometries
and use separate columns for �oor level and height. In PostgreSQL, the latter could be
realised via the numrange2 type.

The initially chosen approach with ST_Contains (5.1) has its limits and makes the queries
unnecessarily complicated as ST_Contains has no real support for PolhedralSufaces. The
problems can be bypassed3, but only in a very unpleasant way. A rewrite of these queries
using PostGIS full-3D functions (e.g. ST_Within3D) seems reasonable. The server at
the AHN lab (bling) was meanwhile upgraded and the postgis_sfcgal PostgreSQL
extension is ready to use (5.1).

For future UI theses, I would recommend to set the focus either on homes or on com-
mercial buildings. Both at the same time is too complex for single person at one point
in time. Maybe also involve students from design and ergonomics.

2https://www.postgresql.org/docs/current/static/rangetypes.html
3https://lists.osgeo.org/pipermail/postgis-users/2017-June/042191.html

https://www.postgresql.org/docs/current/static/rangetypes.html
https://lists.osgeo.org/pipermail/postgis-users/2017-June/042191.html

131

Bibliography

[1] M.-O. Pahl, “Distributed smart space orchestration,” Dissertation, Technische
Universität München, München, 2014. [Online]. Available: http://www.pahl.de/
download/publications/dissertation_pahl_2014.pdf

[2] M. Richter and M. Flückiger, Usability Engineering kompakt: benutzbare Software
gezielt entwickeln. Spektrum Akademischer Verlag Heidelberg, 2013. [Online].
Available: http://doi.org/10.1007/978-3-642-34832-7

[3] J. Bortz and N. Döring, Forschungsmethoden und Evaluation: für Human- und
Sozialwissenschaftler. Springer, 2002.

[4] M. O. Pahl and G. Carle, “Crowdsourced context-modeling as key to future smart
spaces,” in 2014 IEEE Network Operations and Management Symposium (NOMS),
May 2014, pp. 1–8. [Online]. Available: http://doi.org/10.1109/noms.2014.6838362

[5] C. Ebert, Systematisches Requirements Engineering: Anforderungen ermitteln, spezi-
�zieren, analysieren und verwalten. dpunkt. verlag, 2012.

[6] Apple Inc., “HomeKit Developer Guide.” [Online]. Available:
https://developer.apple.com/library/ios/documentation/NetworkingInternet/
Conceptual/HomeKitDeveloperGuide/FindingandAddingAccessories/
FindingandAddingAccessories.html

[7] S. Pole, T. Knerr, P. Barth, and A. Hubel, “Simple indoor tagging,” 2014. [Online].
Available: http://wiki.openstreetmap.org/wiki/Simple_Indoor_Tagging

[8] A. Martinez, “How to choose a geological relational database manage-
ment system,” August 2015. [Online]. Available: http://opengeostat.com/
how-to-choose-geological-database-management-system/

[9] J. Herring, “OpenGIS Implementation Speci�cation for Geographic information
- Simple feature access - Part 1: Common architecture,” Open Geospatial
Consortium, Tech. Rep., 2011. [Online]. Available: http://portal.opengeospatial.
org/�les/?artifact_id=25355

[10] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub, “The GeoJSON
Format,” Internet Requests for Comments, RFC Editor, Tech. Rep., August 2016.
[Online]. Available: http://doi.org/10.17487/RFC7946

http://www.pahl.de/download/publications/dissertation_pahl_2014.pdf
http://www.pahl.de/download/publications/dissertation_pahl_2014.pdf
http://doi.org/10.1007/978-3-642-34832-7
http://doi.org/10.1109/noms.2014.6838362
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/FindingandAddingAccessories/FindingandAddingAccessories.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/FindingandAddingAccessories/FindingandAddingAccessories.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/FindingandAddingAccessories/FindingandAddingAccessories.html
http://wiki.openstreetmap.org/wiki/Simple_Indoor_Tagging
http://opengeostat.com/how-to-choose-geological-database-management-system/
http://opengeostat.com/how-to-choose-geological-database-management-system/
http://portal.opengeospatial.org/files/?artifact_id=25355
http://portal.opengeospatial.org/files/?artifact_id=25355
http://doi.org/10.17487/RFC7946

132 Bibliography

[11] K.-P. Engelbrecht, P. Ehrenbrink, S. Hillmann, and S. Möller, “Messung und Bew-
ertung der Usability in Smart Home-Umgebungen,” in VDE-Kongress 2014. VDE
VERLAG GmbH, 2014.

[12] S. Moeller, K.-P. Engelbrecht, S. Hillmann, and P. Ehrenbrink, “New ITG Guideline
for the Usability Evaluation of Smart Home Environments,” in Speech Communica-
tion; 11. ITG Symposium; Proceedings of, Sept 2014, pp. 1–4.

[13] Bundesministerium für Verkehr und digitale Infrastruktur, “Building Information
Modeling (BIM) wird bis 2020 stufenweise eingeführt,” Pressemitteilung, 2015.
[Online]. Available: http://www.bmvi.de/SharedDocs/DE/Pressemitteilungen/
2015/152-dobrindt-stufenplan-bim.html

[14] A. Borrmann, M. Hochmuth, M. König, T. Liebich, and D. Singer, “Germany’s
governmental BIM initiative–Assessing the performance of the BIM pilot
projects,” 2016. [Online]. Available: http://www.cms.bgu.tum.de/publications/
2016_Borrmann_BIMPilotProjects.pdf

[15] J. Kozel, “How to Visualize Indoor Data in 2D Map? Is This the Way
to Go?” in FOSS4G 2016. Masaryk University, 2016. [Online]. Available:
http://doi.org/10.5446/20394

[16] Busch-Jäger Elektro GmbH, “ABB-free@home® System Manual,” April 2015.
[Online]. Available: http://new.abb.com/docs/librariesprovider84/freeathome/
system-manual_free@home_en_abb_05_03.pdf?sfvrsn=2

[17] (2014, June). [Online]. Available: https://youtube.com/watch?v=P3SxkcKGZpU#t=
27s

[18] M. Weiser, “The computer for the 21st century,” Scienti�c american, vol. 265, no. 3,
pp. 94–104, 1991.

[19] G. Gruman, “The iPad’s victory in de�ning the tablet: What it means,” July
2011. [Online]. Available: http://www.infoworld.com/article/2622583/tablets/
the-ipad-s-victory-in-de�ning-the-tablet--what-it-means.html

[20] B. Shneiderman, Designing the user interface, 5th ed. Upper Saddle River, NJ:
Addison-Wesley, 2010.

[21] Apple Inc., “iOS Human Interface Guidelines.” [Online]. Avail-
able: https://developer.apple.com/library/ios/documentation/UserExperience/
Conceptual/MobileHIG/

[22] Google Inc., “Material design speci�cation.” [Online]. Available: https://www.
google.com/design/spec/

[23] C. O’Sullivan, “A Tale of Two Platforms: Designing for Both Android and
iOS,” April 2015. [Online]. Available: http://webdesign.tutsplus.com/articles/
a-tale-of-two-platforms-designing-for-both-android-and-ios--cms-23616

[24] J. Nielsen, Usability engineering. Elsevier, 1993.

http://www.bmvi.de/SharedDocs/DE/Pressemitteilungen/2015/152-dobrindt-stufenplan-bim.html
http://www.bmvi.de/SharedDocs/DE/Pressemitteilungen/2015/152-dobrindt-stufenplan-bim.html
http://www.cms.bgu.tum.de/publications/2016_Borrmann_BIMPilotProjects.pdf
http://www.cms.bgu.tum.de/publications/2016_Borrmann_BIMPilotProjects.pdf
http://doi.org/10.5446/20394
http://new.abb.com/docs/librariesprovider84/freeathome/system-manual_free@home_en_abb_05_03.pdf?sfvrsn=2
http://new.abb.com/docs/librariesprovider84/freeathome/system-manual_free@home_en_abb_05_03.pdf?sfvrsn=2
https://youtube.com/watch?v=P3SxkcKGZpU#t=27s
https://youtube.com/watch?v=P3SxkcKGZpU#t=27s
http://www.infoworld.com/article/2622583/tablets/the-ipad-s-victory-in-defining-the-tablet--what-it-means.html
http://www.infoworld.com/article/2622583/tablets/the-ipad-s-victory-in-defining-the-tablet--what-it-means.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
https://www.google.com/design/spec/
https://www.google.com/design/spec/
http://webdesign.tutsplus.com/articles/a-tale-of-two-platforms-designing-for-both-android-and-ios--cms-23616
http://webdesign.tutsplus.com/articles/a-tale-of-two-platforms-designing-for-both-android-and-ios--cms-23616

Bibliography 133

[25] D. M. Jones, “The 7±2 urban legend,” in MISRA C Conference, 2002.

[26] Z. Kuhn, “Choosing a Front End Framework: Angular vs. Ember vs.
React,” October 2015. [Online]. Available: http://smashingboxes.com/blog/
choosing-a-front-end-framework-angular-ember-react

[27] K. Kreuzer, “openHAB 2.0 Paper UI Preview,” November 2014. [Online]. Available:
https://youtube.com/watch?v=NolVoL8ewO0

[28] K. Kreuzer, “Home Automation Reloaded,” online, May 2016. [Online]. Available:
https://youtube.com/watch?v=hPX4wAxsbxA

[29] J. Martin and S. Institute, Managing the data-base environment. Prentice-Hall
Englewood Cli�s (NJ), 1983.

[30] M. Otte-Witte, “Feel the Glimmer,” June 2017. [Online]. Available: https:
//youtube.com/watch?v=vIRZDCyfOJc

[31] T. Ornelas, “Using ember with webpack,” February 2016. [Online]. Available:
https://medium.com/@tulios/using-ember-with-webpack-e03290b61dec

[32] J. Nielsen, “Why you only need to test with 5 users,” 2000. [Online]. Available:
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

[33] F. Kuperjans, “Native Service Interfaces for the Virtual State Layer,” Master’s thesis,
Technische Universität München, April 2017.

[34] T. Mankovski, “Choosing a frontend framework in 2017,”
June 2017. [Online]. Available: https://medium.com/this-dot-labs/
building-modern-web-applications-in-2017-791d2ef2e341

http://smashingboxes.com/blog/choosing-a-front-end-framework-angular-ember-react
http://smashingboxes.com/blog/choosing-a-front-end-framework-angular-ember-react
https://youtube.com/watch?v=NolVoL8ewO0
https://youtube.com/watch?v=hPX4wAxsbxA
https://youtube.com/watch?v=vIRZDCyfOJc
https://youtube.com/watch?v=vIRZDCyfOJc
https://medium.com/@tulios/using-ember-with-webpack-e03290b61dec
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://medium.com/this-dot-labs/building-modern-web-applications-in-2017-791d2ef2e341
https://medium.com/this-dot-labs/building-modern-web-applications-in-2017-791d2ef2e341

	Introduction
	Document conventions
	Task definition and environment
	Thesis outline and methodology

	Analysis
	Problem domain: smart spaces
	Interview preparations
	Single apartment Munich
	Single house Augsburg
	Hackerspace Bamberg
	University building Garching

	VSL and DS2OS
	Data model
	Deployment and services inter-exchange
	API
	Programmatic UI, extensible by third party

	Use case model
	Back-end
	Geo data and the VSL
	Geo databases
	Geometries

	Front-end
	Development of user interfaces for smart spaces
	Floor plans as smart space UI
	Mobile apps in smart spaces
	Human interface guidelines
	Self-adapting UI
	Building blocks

	Requirements list

	Related work
	openHAB
	free@home
	HomeKit
	Comparison

	Design
	System overview
	Back-end
	Geo data model
	Geo service API

	Front-end
	Front-end libraries
	Front-end software architecture
	Front-end UI extensions
	Graphical UI-Design

	Implementation
	Back-end: Geodatabase
	Back-end: Geo service
	Front-end: Web app
	Floor plan view
	List / grid view
	Web app – KA interaction
	Front-end extensions

	Evaluation
	Requirements evaluation
	Tests and measurements
	Test 1: Cross browser compliance on PC
	Test 2: Finding bottlenecks
	Test 3: AHN lab: wire vs wireless
	Test 4: Cross browser compliance on tablets
	Test 5: Android performance
	Test 6: UI walk-through on mobile devices

	User study
	Results

	Conclusion
	Assessment
	Future work
	Discussion

	Bibliography

